Jaspa D Favero, Camilla Luck, Ottmar V Lipp, Welber Marinovic
{"title":"The effect of temporal predictability on sensory gating: Cortical responses inform perception.","authors":"Jaspa D Favero, Camilla Luck, Ottmar V Lipp, Welber Marinovic","doi":"10.1111/psyp.14687","DOIUrl":null,"url":null,"abstract":"<p><p>Prepulse inhibition of perceived stimulus intensity (PPIPSI) is a phenomenon where a weak stimulus preceding a stronger one reduces the perceived intensity of the latter. Previous studies have shown that PPIPSI relies on attention and is sensitive to stimulus onset asynchrony (SOA). Longer SOAs may increase conscious awareness of the impact of gating mechanisms on perception by allowing more time for attention to be directed toward relevant processing channels. In other psychophysiological paradigms, temporal predictability improves attention to task relevant stimuli and processes. We hypothesized that temporal predictability may similarly facilitate attention being directed toward the pulse and its processing in PPIPSI. To examine this, we conducted a 2 (SOA: 90 ms, 150 ms) × 2 (predictability: low, high) experiment, where participants were tasked with comparing the perceived intensity of an acoustic pulse-alone against one preceded by a prepulse. The relationship between PPIPSI and cortical PPI (N1-P2 inhibition) was also investigated. Significant main effects of temporal predictability, SOA, and cortical PPI were revealed. Under high temporal predictability, both SOAs (90 and 150 ms) elicited greater PPIPSI. The findings indicate that temporal predictability enhances the timely allocation of finite attentional resources, increasing PPIPSI observations by facilitating perceptual access to the gated pulse signal. Moreover, the finding that reductions in N1-P2 magnitude by a prepulse are associated with increased probability of the participants perceiving the pulse \"with prepulse\" as less intense, suggests that under various experimental conditions, the link between these cortical processes and perception is similarly engaged.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14687","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prepulse inhibition of perceived stimulus intensity (PPIPSI) is a phenomenon where a weak stimulus preceding a stronger one reduces the perceived intensity of the latter. Previous studies have shown that PPIPSI relies on attention and is sensitive to stimulus onset asynchrony (SOA). Longer SOAs may increase conscious awareness of the impact of gating mechanisms on perception by allowing more time for attention to be directed toward relevant processing channels. In other psychophysiological paradigms, temporal predictability improves attention to task relevant stimuli and processes. We hypothesized that temporal predictability may similarly facilitate attention being directed toward the pulse and its processing in PPIPSI. To examine this, we conducted a 2 (SOA: 90 ms, 150 ms) × 2 (predictability: low, high) experiment, where participants were tasked with comparing the perceived intensity of an acoustic pulse-alone against one preceded by a prepulse. The relationship between PPIPSI and cortical PPI (N1-P2 inhibition) was also investigated. Significant main effects of temporal predictability, SOA, and cortical PPI were revealed. Under high temporal predictability, both SOAs (90 and 150 ms) elicited greater PPIPSI. The findings indicate that temporal predictability enhances the timely allocation of finite attentional resources, increasing PPIPSI observations by facilitating perceptual access to the gated pulse signal. Moreover, the finding that reductions in N1-P2 magnitude by a prepulse are associated with increased probability of the participants perceiving the pulse "with prepulse" as less intense, suggests that under various experimental conditions, the link between these cortical processes and perception is similarly engaged.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.