A modified U-Net to detect real sperms in videos of human sperm cell.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-09-09 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1376546
Hanan Saadat, Mohammad Mehdi Sepehri, Mahdi-Reza Borna, Behnam Maleki
{"title":"A modified U-Net to detect real sperms in videos of human sperm cell.","authors":"Hanan Saadat, Mohammad Mehdi Sepehri, Mahdi-Reza Borna, Behnam Maleki","doi":"10.3389/frai.2024.1376546","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study delves into the crucial domain of sperm segmentation, a pivotal component of male infertility diagnosis. It explores the efficacy of diverse architectural configurations coupled with various encoders, leveraging frames from the VISEM dataset for evaluation.</p><p><strong>Methods: </strong>The pursuit of automated sperm segmentation led to the examination of multiple deep learning architectures, each paired with distinct encoders. Extensive experimentation was conducted on the VISEM dataset to assess their performance.</p><p><strong>Results: </strong>Our study evaluated various deep learning architectures with different encoders for sperm segmentation using the VISEM dataset. While each model configuration exhibited distinct strengths and weaknesses, UNet++ with ResNet34 emerged as a top-performing model, demonstrating exceptional accuracy in distinguishing sperm cells from non-sperm cells. However, challenges persist in accurately identifying closely adjacent sperm cells. These findings provide valuable insights for improving automated sperm segmentation in male infertility diagnosis.</p><p><strong>Discussion: </strong>The study underscores the significance of selecting appropriate model combinations based on specific diagnostic requirements. It also highlights the challenges related to distinguishing closely adjacent sperm cells.</p><p><strong>Conclusion: </strong>This research advances the field of automated sperm segmentation for male infertility diagnosis, showcasing the potential of deep learning techniques. Future work should aim to enhance accuracy in scenarios involving close proximity between sperm cells, ultimately improving clinical sperm analysis.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1376546"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418809/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1376546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study delves into the crucial domain of sperm segmentation, a pivotal component of male infertility diagnosis. It explores the efficacy of diverse architectural configurations coupled with various encoders, leveraging frames from the VISEM dataset for evaluation.

Methods: The pursuit of automated sperm segmentation led to the examination of multiple deep learning architectures, each paired with distinct encoders. Extensive experimentation was conducted on the VISEM dataset to assess their performance.

Results: Our study evaluated various deep learning architectures with different encoders for sperm segmentation using the VISEM dataset. While each model configuration exhibited distinct strengths and weaknesses, UNet++ with ResNet34 emerged as a top-performing model, demonstrating exceptional accuracy in distinguishing sperm cells from non-sperm cells. However, challenges persist in accurately identifying closely adjacent sperm cells. These findings provide valuable insights for improving automated sperm segmentation in male infertility diagnosis.

Discussion: The study underscores the significance of selecting appropriate model combinations based on specific diagnostic requirements. It also highlights the challenges related to distinguishing closely adjacent sperm cells.

Conclusion: This research advances the field of automated sperm segmentation for male infertility diagnosis, showcasing the potential of deep learning techniques. Future work should aim to enhance accuracy in scenarios involving close proximity between sperm cells, ultimately improving clinical sperm analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的 U-Net 用于检测人类精子细胞视频中的真精子。
研究背景本研究深入探讨了精子分割这一关键领域,精子分割是男性不育症诊断的重要组成部分。它利用来自 VISEM 数据集的帧进行评估,探索了不同架构配置和各种编码器的功效:方法:为了实现精子自动分割,我们研究了多种深度学习架构,每种架构都搭配了不同的编码器。我们在 VISEM 数据集上进行了广泛的实验,以评估它们的性能:我们的研究利用 VISEM 数据集评估了各种深度学习架构和不同编码器在精子分割方面的表现。虽然每种模型配置都表现出不同的优缺点,但 UNet++ 与 ResNet34 成为表现最佳的模型,在区分精子细胞与非精子细胞方面表现出了极高的准确性。然而,在准确识别紧密相邻的精子细胞方面仍然存在挑战。这些发现为改进男性不育诊断中的自动精子分割提供了宝贵的见解:讨论:这项研究强调了根据具体诊断要求选择适当模型组合的重要性。讨论:该研究强调了根据特定诊断要求选择适当的模型组合的重要性,同时也突出了与区分相邻精子细胞相关的挑战:这项研究推进了用于男性不育诊断的精子自动分割领域,展示了深度学习技术的潜力。未来的工作应着眼于提高精子细胞间紧密相邻情况下的准确性,最终改善临床精子分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques. Inpainting of damaged temple murals using edge- and line-guided diffusion patch GAN. Catalyzing IVF outcome prediction: exploring advanced machine learning paradigms for enhanced success rate prognostication. Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor. A generative AI-driven interactive listening assessment task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1