StuGPTViz: A Visual Analytics Approach to Understand Student-ChatGPT Interactions.

Zixin Chen, Jiachen Wang, Meng Xia, Kento Shigyo, Dingdong Liu, Rong Zhang, Huamin Qu
{"title":"StuGPTViz: A Visual Analytics Approach to Understand Student-ChatGPT Interactions.","authors":"Zixin Chen, Jiachen Wang, Meng Xia, Kento Shigyo, Dingdong Liu, Rong Zhang, Huamin Qu","doi":"10.1109/TVCG.2024.3456363","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of Large Language Models (LLMs), especially ChatGPT, into education is poised to revolutionize students' learning experiences by introducing innovative conversational learning methodologies. To empower students to fully leverage the capabilities of ChatGPT in educational scenarios, understanding students' interaction patterns with ChatGPT is crucial for instructors. However, this endeavor is challenging due to the absence of datasets focused on student-ChatGPT conversations and the complexities in identifying and analyzing the evolutional interaction patterns within conversations. To address these challenges, we collected conversational data from 48 students interacting with ChatGPT in a master's level data visualization course over one semester. We then developed a coding scheme, grounded in the literature on cognitive levels and thematic analysis, to categorize students' interaction patterns with ChatGPT. Furthermore, we present a visual analytics system, StuGPTViz, that tracks and compares temporal patterns in student prompts and the quality of ChatGPT's responses at multiple scales, revealing significant pedagogical insights for instructors. We validated the system's effectiveness through expert interviews with six data visualization instructors and three case studies. The results confirmed StuGPTViz's capacity to enhance educators' insights into the pedagogical value of ChatGPT. We also discussed the potential research opportunities of applying visual analytics in education and developing AI-driven personalized learning solutions.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3456363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Large Language Models (LLMs), especially ChatGPT, into education is poised to revolutionize students' learning experiences by introducing innovative conversational learning methodologies. To empower students to fully leverage the capabilities of ChatGPT in educational scenarios, understanding students' interaction patterns with ChatGPT is crucial for instructors. However, this endeavor is challenging due to the absence of datasets focused on student-ChatGPT conversations and the complexities in identifying and analyzing the evolutional interaction patterns within conversations. To address these challenges, we collected conversational data from 48 students interacting with ChatGPT in a master's level data visualization course over one semester. We then developed a coding scheme, grounded in the literature on cognitive levels and thematic analysis, to categorize students' interaction patterns with ChatGPT. Furthermore, we present a visual analytics system, StuGPTViz, that tracks and compares temporal patterns in student prompts and the quality of ChatGPT's responses at multiple scales, revealing significant pedagogical insights for instructors. We validated the system's effectiveness through expert interviews with six data visualization instructors and three case studies. The results confirmed StuGPTViz's capacity to enhance educators' insights into the pedagogical value of ChatGPT. We also discussed the potential research opportunities of applying visual analytics in education and developing AI-driven personalized learning solutions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
StuGPTViz:了解学生聊天互动的可视化分析方法。
将大语言模型(LLM),尤其是 ChatGPT 融入教育领域,有望通过引入创新的会话学习方法彻底改变学生的学习体验。为了让学生在教育场景中充分利用 ChatGPT 的功能,了解学生与 ChatGPT 的交互模式对教师来说至关重要。然而,由于缺乏专注于学生与 ChatGPT 会话的数据集,以及识别和分析会话中演化交互模式的复杂性,这项工作具有挑战性。为了应对这些挑战,我们收集了 48 名学生在一个学期的硕士数据可视化课程中与 ChatGPT 互动的对话数据。然后,我们在认知水平和主题分析文献的基础上开发了一套编码方案,用于对学生与 ChatGPT 的交互模式进行分类。此外,我们还介绍了一个可视化分析系统 StuGPTViz,该系统可在多个尺度上跟踪和比较学生提示的时间模式和 ChatGPT 的响应质量,为教师提供重要的教学启示。我们通过对六位数据可视化讲师的专家访谈和三项案例研究验证了该系统的有效性。结果证实,StuGPTViz 能够提高教育工作者对 ChatGPT 教学价值的洞察力。我们还讨论了将可视化分析应用于教育和开发人工智能驱动的个性化学习解决方案的潜在研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"where Did My Apps Go?" Supporting Scalable and Transition-Aware Access to Everyday Applications in Head-Worn Augmented Reality. PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction. From Dashboard Zoo to Census: A Case Study With Tableau Public. Authoring Data-Driven Chart Animations. Super-NeRF: View-consistent Detail Generation for NeRF Super-resolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1