Coal Cryogenic Treatment Temperature Response Model under Multiphase Coupling Effect

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-09-13 DOI:10.1021/acsomega.4c0581610.1021/acsomega.4c05816
Shanxue Zhang, Zhaofeng Wang*, Daopeng Fan, Yang Qiu and Yanqi Chen, 
{"title":"Coal Cryogenic Treatment Temperature Response Model under Multiphase Coupling Effect","authors":"Shanxue Zhang,&nbsp;Zhaofeng Wang*,&nbsp;Daopeng Fan,&nbsp;Yang Qiu and Yanqi Chen,&nbsp;","doi":"10.1021/acsomega.4c0581610.1021/acsomega.4c05816","DOIUrl":null,"url":null,"abstract":"<p >The coal is affected by the latent heat of the phase change of in situ and migrating water and the exothermic heat of gas adsorbed by the coal during the freezing process, which leads to different temperatures at different locations and times inside the coal. Relying on the independently developed simulation platform for the freezing response characteristics of gas-containing coal, simulation experiments on the internal temperature change of the coal freezing process under different ambient cryogenic treatment temperatures were carried out, and the effects of the phase change latent heat of the in situ water and migrating water and the exothermic heat of gas adsorbed by the coal on the freezing coal temperature field were taken into account, so as to establish a temperature field model of the cryogenic treatment process of the coal under the influence of the thermal effect of the water and gas and construct the internal heat transfer model of the freezing coal with the aid of COMSOL. The internal heat transfer of frozen coal was constructed with the help of COMSOL, and the mathematical model of temperature field proposed in this paper was simulated and verified. The results show that the change in temperature with time in the coal cryogenic treatment process is consistent with the experimental law. It is generally divided into four stages: rapid decline, short stabilization, slow decline, and relative stability, and the maximum error between the simulation temperature and the experimentally measured temperature is 0.85 K. The rate of temperature decrease of coal during the cryogenic treatment process is accelerated with the decrease of ambient freezing temperature, and the duration of short stabilization of temperature is shortened in the stage of water phase change. The mathematical model proposed in this article can be used to simulate and characterize the temperature field distribution and changes during the cryogenic treatment process of water-containing gas-containing coal.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05816","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05816","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The coal is affected by the latent heat of the phase change of in situ and migrating water and the exothermic heat of gas adsorbed by the coal during the freezing process, which leads to different temperatures at different locations and times inside the coal. Relying on the independently developed simulation platform for the freezing response characteristics of gas-containing coal, simulation experiments on the internal temperature change of the coal freezing process under different ambient cryogenic treatment temperatures were carried out, and the effects of the phase change latent heat of the in situ water and migrating water and the exothermic heat of gas adsorbed by the coal on the freezing coal temperature field were taken into account, so as to establish a temperature field model of the cryogenic treatment process of the coal under the influence of the thermal effect of the water and gas and construct the internal heat transfer model of the freezing coal with the aid of COMSOL. The internal heat transfer of frozen coal was constructed with the help of COMSOL, and the mathematical model of temperature field proposed in this paper was simulated and verified. The results show that the change in temperature with time in the coal cryogenic treatment process is consistent with the experimental law. It is generally divided into four stages: rapid decline, short stabilization, slow decline, and relative stability, and the maximum error between the simulation temperature and the experimentally measured temperature is 0.85 K. The rate of temperature decrease of coal during the cryogenic treatment process is accelerated with the decrease of ambient freezing temperature, and the duration of short stabilization of temperature is shortened in the stage of water phase change. The mathematical model proposed in this article can be used to simulate and characterize the temperature field distribution and changes during the cryogenic treatment process of water-containing gas-containing coal.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多相耦合效应下煤炭低温处理温度响应模型
煤炭在冻结过程中受到原位水和迁移水相变潜热以及煤炭吸附气体放热的影响,导致煤炭内部不同位置和时间的温度不同。依托自主研发的含气煤冷冻响应特性模拟平台,对不同环境低温处理温度下煤冷冻过程的内部温度变化进行了模拟实验、考虑了原位水和迁移水的相变潜热以及煤吸附气体的放热对煤冻结温度场的影响,建立了水和气体热效应影响下煤低温处理过程的温度场模型,并借助 COMSOL 建立了煤冻结内部传热模型。利用 COMSOL 建立了冷冻煤内部传热模型,并对本文提出的温度场数学模型进行了仿真验证。结果表明,煤炭低温处理过程中温度随时间的变化符合实验规律。煤在低温处理过程中的温度下降速度随着环境冻结温度的降低而加快,在水相变阶段温度短暂稳定的时间缩短。本文提出的数学模型可用于模拟和表征含水瓦斯煤低温处理过程中的温度场分布和变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Development of a 3D Printing-Enabled Cost-Effective Multimodal Raman Probe with High Signal-to-noise Ratio Raman Spectrum Measurements Affordable Two-Dimensional Layered Cd(II) Coordination Polymer: High-Performance Pseudocapacitor Electrode Behavior Comprehensive Exploration of Bromophenol Derivatives: Promising Antibacterial Agents against SA and MRSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1