Irene Caro-Campos, Marta María González-Barrios, Oscar J. Dura, Erik Fransson, Jose J. Plata, David Ávila, Javier Fdez Sanz, Jesús Prado-Gonjal and Antonio M. Márquez*,
{"title":"Challenges Reconciling Theory and Experiments in the Prediction of Lattice Thermal Conductivity: The Case of Cu-Based Sulvanites","authors":"Irene Caro-Campos, Marta María González-Barrios, Oscar J. Dura, Erik Fransson, Jose J. Plata, David Ávila, Javier Fdez Sanz, Jesús Prado-Gonjal and Antonio M. Márquez*, ","doi":"10.1021/acs.chemmater.4c0134310.1021/acs.chemmater.4c01343","DOIUrl":null,"url":null,"abstract":"<p >The exploration of large chemical spaces in search of new thermoelectric materials requires the integration of experiments, theory, simulations, and data science. The development of high-throughput strategies that combine DFT calculations with machine learning has emerged as a powerful approach to discovering new materials. However, experimental validation is crucial to confirm the accuracy of these workflows. This validation becomes especially important in understanding the transport properties that govern the thermoelectric performance of materials since they are highly influenced by synthetic, processing, and operating conditions. In this work, we explore the thermal conductivity of Cu-based sulvanites by using a combination of theoretical and experimental methods. Previous discrepancies and significant variations in reported data for Cu<sub>3</sub>VS<sub>4</sub> and Cu<sub>3</sub>VSe<sub>4</sub> are explained using the Boltzmann Transport Equation for phonons and by synthesizing well-characterized defect-free samples. The use of machine learning approaches for extracting high-order force constants opens doors to charting the lattice thermal conductivity across the entire Cu-based sulvanite family─finding not only materials with κ<sub><i>l</i></sub> values below 2 W m<sup>–1</sup> K<sup>–1</sup> at moderate temperatures but also rationalizing their thermal transport properties based on chemical composition.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c01343","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c01343","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of large chemical spaces in search of new thermoelectric materials requires the integration of experiments, theory, simulations, and data science. The development of high-throughput strategies that combine DFT calculations with machine learning has emerged as a powerful approach to discovering new materials. However, experimental validation is crucial to confirm the accuracy of these workflows. This validation becomes especially important in understanding the transport properties that govern the thermoelectric performance of materials since they are highly influenced by synthetic, processing, and operating conditions. In this work, we explore the thermal conductivity of Cu-based sulvanites by using a combination of theoretical and experimental methods. Previous discrepancies and significant variations in reported data for Cu3VS4 and Cu3VSe4 are explained using the Boltzmann Transport Equation for phonons and by synthesizing well-characterized defect-free samples. The use of machine learning approaches for extracting high-order force constants opens doors to charting the lattice thermal conductivity across the entire Cu-based sulvanite family─finding not only materials with κl values below 2 W m–1 K–1 at moderate temperatures but also rationalizing their thermal transport properties based on chemical composition.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.