{"title":"Structural fatigue crack propagation simulation and life prediction based on improved XFEM-VCCT","authors":"Zhiying Chen , Yanwei Dai , Yinghua Liu","doi":"10.1016/j.engfracmech.2024.110519","DOIUrl":null,"url":null,"abstract":"<div><div>To simulate structural crack propagation and predict fatigue life, the extended finite element method (XFEM) combined with the virtual crack closure technique (VCCT) is adopted in this paper. Firstly, the underlying principles of the XFEM-VCCT framework are elaborated comprehensively, mainly including the calculation of crack tip energy release rate based on VCCT, the simulation of element cracking utilizing the phantom nodes, and the computation of structural responses under cyclic loading through the direct cyclic analysis. In addition, to calculate the crack propagation length, an interpolation method to obtain the crack tip coordinates is developed based on tracking and locating the crack by the level set functions. Meanwhile, to compensate the defect that the fatigue life is often overestimated when dealing with the complex mode crack in complex structure through XFEM-VCCT, a simple improved algorithm based on the average rate concept is proposed without altering the XFEM-VCCT framework. Based on specific examples, the necessity and accuracy of the improved algorithm are fully verified by comparing with the original method, and the fatigue life predicted by the improved algorithm is more consistent with reality. Finally, this method is successfully applied to the simulation and analyses for a typical ship stiffened plate structure, demonstrating good engineering applicability.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"310 ","pages":"Article 110519"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006829","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
To simulate structural crack propagation and predict fatigue life, the extended finite element method (XFEM) combined with the virtual crack closure technique (VCCT) is adopted in this paper. Firstly, the underlying principles of the XFEM-VCCT framework are elaborated comprehensively, mainly including the calculation of crack tip energy release rate based on VCCT, the simulation of element cracking utilizing the phantom nodes, and the computation of structural responses under cyclic loading through the direct cyclic analysis. In addition, to calculate the crack propagation length, an interpolation method to obtain the crack tip coordinates is developed based on tracking and locating the crack by the level set functions. Meanwhile, to compensate the defect that the fatigue life is often overestimated when dealing with the complex mode crack in complex structure through XFEM-VCCT, a simple improved algorithm based on the average rate concept is proposed without altering the XFEM-VCCT framework. Based on specific examples, the necessity and accuracy of the improved algorithm are fully verified by comparing with the original method, and the fatigue life predicted by the improved algorithm is more consistent with reality. Finally, this method is successfully applied to the simulation and analyses for a typical ship stiffened plate structure, demonstrating good engineering applicability.
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.