Application of AgInSe2 nanoparticles to boost the power conversion efficiency of CdS QDs-sensitized solar cells

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2024-09-18 DOI:10.1016/j.jssc.2024.125020
{"title":"Application of AgInSe2 nanoparticles to boost the power conversion efficiency of CdS QDs-sensitized solar cells","authors":"","doi":"10.1016/j.jssc.2024.125020","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, bandgap engineering was utilized to assess the efficiency of photoanodes incorporating CdS nanocrystals and AgInSe<sub>2</sub> (AISe) quantum dots (QDs) in quantum dot-sensitized solar cells (QDSSCs). Initially, the deposition of CdS(Xc) nanocrystal layers on a TiO<sub>2</sub> substrate was tested using the SILAR method with varying cycles (X = 1–6). Optical transmission analysis revealed a redshift in the absorption edge and reduced transmission with an increasing number of cycles. J-V analysis of TiO<sub>2</sub> NCs/CdS(Xc) photoanodes identified cycle X = 5 as optimal. The short-circuit current density (J<sub>sc</sub>), open-circuit voltage (V<sub>oc</sub>), fill factor (FF) and maximum power conversion efficiency (PCE) were 15.5 mA/cm<sup>2</sup>, 614 mV, 40 %, and 3.76 %, respectively. Subsequently, pre-synthesized AISe QDs were deposited on TiO<sub>2</sub> nanocrystals/CdS(Xc) photoanodes, exhibiting a single absorption edge with a bandgap energy of 2.19 eV for all photoanodes. The TiO<sub>2</sub> NCs/CdS(5c)/AISe/ZnS photoanode showed an increase in J<sub>sc</sub> and efficiency, reaching 17.25 mA/cm<sup>2</sup> and 4.27 %, respectively. Utilizing sub-micron-sized TiO<sub>2</sub> hollow spheres (HSs) as a light-scattering layer further enhanced light absorption and performance. It was demonstrated that this approach increased the photovoltaic parameters to a J<sub>sc</sub> of 19.12 mA/cm<sup>2</sup>, FF of 43 %, and an overall efficiency of 4.75 %.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624004742","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, bandgap engineering was utilized to assess the efficiency of photoanodes incorporating CdS nanocrystals and AgInSe2 (AISe) quantum dots (QDs) in quantum dot-sensitized solar cells (QDSSCs). Initially, the deposition of CdS(Xc) nanocrystal layers on a TiO2 substrate was tested using the SILAR method with varying cycles (X = 1–6). Optical transmission analysis revealed a redshift in the absorption edge and reduced transmission with an increasing number of cycles. J-V analysis of TiO2 NCs/CdS(Xc) photoanodes identified cycle X = 5 as optimal. The short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF) and maximum power conversion efficiency (PCE) were 15.5 mA/cm2, 614 mV, 40 %, and 3.76 %, respectively. Subsequently, pre-synthesized AISe QDs were deposited on TiO2 nanocrystals/CdS(Xc) photoanodes, exhibiting a single absorption edge with a bandgap energy of 2.19 eV for all photoanodes. The TiO2 NCs/CdS(5c)/AISe/ZnS photoanode showed an increase in Jsc and efficiency, reaching 17.25 mA/cm2 and 4.27 %, respectively. Utilizing sub-micron-sized TiO2 hollow spheres (HSs) as a light-scattering layer further enhanced light absorption and performance. It was demonstrated that this approach increased the photovoltaic parameters to a Jsc of 19.12 mA/cm2, FF of 43 %, and an overall efficiency of 4.75 %.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用 AgInSe2 纳米粒子提高 CdS QDs 感光太阳能电池的功率转换效率
本研究利用带隙工程评估了量子点敏化太阳能电池(QDSSC)中包含 CdS 纳米晶体和 AgInSe2 (AISe) 量子点 (QD) 的光阳极的效率。最初,我们使用不同周期(X = 1-6)的 SILAR 方法在 TiO2 基质上测试了 CdS(Xc) 纳米晶体层的沉积。光学透射分析表明,随着循环次数的增加,吸收边缘会发生红移,透射率也会降低。对 TiO2 NCs/CdS(Xc)光阳极进行的 J-V 分析表明,周期 X = 5 为最佳值。短路电流密度(Jsc)、开路电压(Voc)、填充因子(FF)和最大功率转换效率(PCE)分别为 15.5 mA/cm2、614 mV、40 % 和 3.76 %。随后,在 TiO2 纳米晶/CdS(Xc) 光阳极上沉积了预合成的 AISe QDs,所有光阳极都表现出带隙能为 2.19 eV 的单吸收边。TiO2 纳米晶/CdS(5c)/AISe/ZnS 光阳极的 Jsc 和效率都有所提高,分别达到 17.25 mA/cm2 和 4.27%。利用亚微米尺寸的 TiO2 空心球(HS)作为光散射层进一步提高了光吸收和性能。研究表明,这种方法将光伏参数提高到了 19.12 mA/cm2,FF 为 43 %,总效率为 4.75 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Structural features of the products based on potassium polytitanate modified in aqueous solutions of ferric sulfate The role of crystallographic orientation on surface properties and ion transport in lithium germanate (Li2GeO3) anodes: A computational approach Stability under electron irradiation of some layered hydrated minerals Synthesis of spherical amorphous metal‒organic frameworks via an in situ hydrolysis strategy for chiral HPLC separation A fluorinated star-shaped covalent organic framework for efficient iodine adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1