Theoretical Investigation of the structure and Raman scattering properties of Hoogsteen- and Watson-Crick-type Adenine-Thymine base pair

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2024-09-19 DOI:10.1016/j.chemphys.2024.112465
Yu Xiao , Feng-Yi Zhang , Ming-Jun Ma , Si-Jun Lu , Yong-Jun Zhang , Xiao-Yu Zhao , Ya-Xin Wang , Kun Zhang , Hong-Liang Xu
{"title":"Theoretical Investigation of the structure and Raman scattering properties of Hoogsteen- and Watson-Crick-type Adenine-Thymine base pair","authors":"Yu Xiao ,&nbsp;Feng-Yi Zhang ,&nbsp;Ming-Jun Ma ,&nbsp;Si-Jun Lu ,&nbsp;Yong-Jun Zhang ,&nbsp;Xiao-Yu Zhao ,&nbsp;Ya-Xin Wang ,&nbsp;Kun Zhang ,&nbsp;Hong-Liang Xu","doi":"10.1016/j.chemphys.2024.112465","DOIUrl":null,"url":null,"abstract":"<div><div>Hoogsteen (HG) and Watson-Crick (WC) adenine–thymine (A-T) base pairs are fundamental to gene expression and genomic stability. Our research applied density functional theory (DFT) calculations to analyze these base pairs, demonstrating that linking them with ribose or deoxyribose and their immersion in solvents markedly enhances the distinctions in their optical properties. DFT results reveal that N···H<img>N hydrogen bonds in both HG and WC pairs exhibit characteristics of both ionic and covalent bonds, playing a crucial role in their stability. While WC base pairs demonstrate stronger orbital interactions, they also experience greater repulsion than HG pairs. This repulsion offsets the positive interactions to a degree, making the interaction energy of WC pairs slightly lower than that of HG pairs. Furthermore, the distinct conformations of these base pairs result in different vibrational modes, suggesting Raman spectroscopy as an effective method for distinguishing between WC and HG base pairs.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"588 ","pages":"Article 112465"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002945","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hoogsteen (HG) and Watson-Crick (WC) adenine–thymine (A-T) base pairs are fundamental to gene expression and genomic stability. Our research applied density functional theory (DFT) calculations to analyze these base pairs, demonstrating that linking them with ribose or deoxyribose and their immersion in solvents markedly enhances the distinctions in their optical properties. DFT results reveal that N···HN hydrogen bonds in both HG and WC pairs exhibit characteristics of both ionic and covalent bonds, playing a crucial role in their stability. While WC base pairs demonstrate stronger orbital interactions, they also experience greater repulsion than HG pairs. This repulsion offsets the positive interactions to a degree, making the interaction energy of WC pairs slightly lower than that of HG pairs. Furthermore, the distinct conformations of these base pairs result in different vibrational modes, suggesting Raman spectroscopy as an effective method for distinguishing between WC and HG base pairs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胡格斯坦和沃森-克里克型腺嘌呤-酪氨酸碱基对的结构和拉曼散射特性的理论研究
Hoogsteen(HG)和 Watson-Crick (WC)腺嘌呤-胸腺嘧啶(A-T)碱基对是基因表达和基因组稳定性的基础。我们的研究运用密度泛函理论(DFT)计算来分析这些碱基对,结果表明,将它们与核糖或脱氧核糖连接起来并浸入溶剂中,能显著增强它们的光学特性差异。DFT 结果表明,HG 和 WC 碱基对中的 N-HN 氢键同时具有离子键和共价键的特征,对它们的稳定性起着至关重要的作用。虽然 WC 碱基对表现出更强的轨道相互作用,但它们也比 HG 碱基对具有更大的斥力。这种斥力在一定程度上抵消了正相互作用,使得 WC 碱基对的相互作用能略低于 HG 碱基对。此外,这些碱基对的不同构象导致了不同的振动模式,这表明拉曼光谱是区分 WC 和 HG 碱基对的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
Investigation of the Structural, Vibrational, Electronic, and optical properties of energetic Nitrogen-Rich azidotetrazolates XCN7 (X = N2H5, NH4, K, Cs) Structural and spectral characterizations of mono-nitrogen doped C70 fullerene by soft X-ray spectroscopy Construction of dual-output molecular logic circuit based on bovine serum albumin loaded with two fluorescent compounds Investigation on the development of Novel PAM structure as high-performance clay inhibitor in HT/HP conditions by using functional groups Modulated electronic properties of borophene nanoribbons using copper and oxygen atoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1