Amir Masoud Rahmani , Amir Haider , Shtwai Alsubai , Abdullah Alqahtani , Abed Alanazi , Mehdi Hosseinzadeh
{"title":"A novel energy-efficient and cost-effective task offloading approach for UAV-enabled MEC with LEO enhancement in Internet of Remote Things networks","authors":"Amir Masoud Rahmani , Amir Haider , Shtwai Alsubai , Abdullah Alqahtani , Abed Alanazi , Mehdi Hosseinzadeh","doi":"10.1016/j.simpat.2024.103018","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Remote Things (IoRT) involves networks of devices deployed in extensive and often remote areas, collecting data for transmission and processing. In such networks, Unmanned Aerial Vehicles (UAVs) gather data, which is then sent to Low Earth Orbit (LEO) satellites for processing. These systems often face significant challenges, particularly in task offloading. Conventional methods typically rely on static routing and scheduling algorithms that do not adapt to changing conditions and usually overlook the complexity of dynamic decision-making in harsh or isolated environments, thus failing to address the critical challenges of energy efficiency and latency. In this paper, we introduce a method comprised of a three-layer architecture. The first layer, the IoRT computing layer, uses Deep Q-Network (DQN) to optimize local decisions based on device constraints and task urgency. The second layer features UAVs serve as Mobile Edge Computing (MEC), which not only processes data but also decides whether to process tasks locally or offload them to LEO satellites, utilizing the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for this decision-making process. The third LEO Satellite Layer has a high computational capacity to handle offloaded tasks. Simulation results demonstrate notable improvements: compared to another method, the proposed model shows a 14.73 % reduction in energy consumption and a 23.13 % decrease in latency while reducing execution costs by an average of 28.7 %.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"137 ","pages":"Article 103018"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001321","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Remote Things (IoRT) involves networks of devices deployed in extensive and often remote areas, collecting data for transmission and processing. In such networks, Unmanned Aerial Vehicles (UAVs) gather data, which is then sent to Low Earth Orbit (LEO) satellites for processing. These systems often face significant challenges, particularly in task offloading. Conventional methods typically rely on static routing and scheduling algorithms that do not adapt to changing conditions and usually overlook the complexity of dynamic decision-making in harsh or isolated environments, thus failing to address the critical challenges of energy efficiency and latency. In this paper, we introduce a method comprised of a three-layer architecture. The first layer, the IoRT computing layer, uses Deep Q-Network (DQN) to optimize local decisions based on device constraints and task urgency. The second layer features UAVs serve as Mobile Edge Computing (MEC), which not only processes data but also decides whether to process tasks locally or offload them to LEO satellites, utilizing the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for this decision-making process. The third LEO Satellite Layer has a high computational capacity to handle offloaded tasks. Simulation results demonstrate notable improvements: compared to another method, the proposed model shows a 14.73 % reduction in energy consumption and a 23.13 % decrease in latency while reducing execution costs by an average of 28.7 %.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.