3D dynamic analysis in a 3D-FG cylindrical thick panel with two-dimensional nonlinear grading patterns using meshless local Petrov – Galerkin (MLPG) method

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Analysis with Boundary Elements Pub Date : 2024-09-23 DOI:10.1016/j.enganabound.2024.105964
{"title":"3D dynamic analysis in a 3D-FG cylindrical thick panel with two-dimensional nonlinear grading patterns using meshless local Petrov – Galerkin (MLPG) method","authors":"","doi":"10.1016/j.enganabound.2024.105964","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a 3D dynamic wave propagation analysis in a 3D-FG cylindrical thick panel with two-directional grading patterns. To this end, the meshless local Petrov–Galerkin (MLPG) method is employed to solve the dynamic equilibrium equations.. Moreover, the mechanical properties of FGMs are simulated through a nonlinear model with radial and axial volume fractions. Time-dependent equations are treated using The Laplace transform with the MLPG method, while the Talbot method is applied to transfer the displacements from Laplace to the time domain. To obtain the best result, the size of the support domain and parameters of the radial basis function is obtained; also, for varied grading patterns and time instants, the elastic wave propagation of displacement is analyzed in radial, hoop, and axial directions. The present method shows high accuracy and efficiency for wave propagation and shock analysis in a 3D-FG cylindrical thick panel with a two-directional grading pattern, thus providing a ground for a more flexible design.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004375","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a 3D dynamic wave propagation analysis in a 3D-FG cylindrical thick panel with two-directional grading patterns. To this end, the meshless local Petrov–Galerkin (MLPG) method is employed to solve the dynamic equilibrium equations.. Moreover, the mechanical properties of FGMs are simulated through a nonlinear model with radial and axial volume fractions. Time-dependent equations are treated using The Laplace transform with the MLPG method, while the Talbot method is applied to transfer the displacements from Laplace to the time domain. To obtain the best result, the size of the support domain and parameters of the radial basis function is obtained; also, for varied grading patterns and time instants, the elastic wave propagation of displacement is analyzed in radial, hoop, and axial directions. The present method shows high accuracy and efficiency for wave propagation and shock analysis in a 3D-FG cylindrical thick panel with a two-directional grading pattern, thus providing a ground for a more flexible design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用无网格局部彼得罗夫-加勒金(MLPG)方法对具有二维非线性级配模式的三维-FG 圆柱厚板进行三维动态分析
本研究介绍了在具有双向分级模式的三维-FG 圆柱厚板中的三维动态波传播分析。为此,采用了无网格局部 Petrov-Galerkin (MLPG) 方法来求解动态平衡方程。此外,还通过具有径向和轴向体积分数的非线性模型模拟了 FGM 的机械特性。采用拉普拉斯变换和 MLPG 方法处理与时间相关的方程,同时采用 Talbot 方法将位移从拉普拉斯域转移到时域。为了获得最佳结果,对支撑域的大小和径向基函数的参数进行了求解;同时,针对不同的分级模式和时间瞬时,对位移在径向、环向和轴向的弹性波传播进行了分析。本方法对具有双向分级模式的三维-FG 圆柱形厚板的波传播和冲击分析具有较高的精度和效率,从而为更灵活的设计提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
期刊最新文献
A TOUGH-FEMM based cryogenic THM coupled model and its application to cold-region tunnels AttenEpilepsy: A 2D convolutional network model based on multi-head self-attention A novel direct interpolation boundary element method formulation for solving diffusive–advective problems Numerical modeling and failure analysis of steel fiber-reinforced concrete beams in a reformulated mesoscopic peridynamic model Self-propulsion performance prediction in calm water based on RANS/TEBEM coupling method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1