{"title":"Acoustic emission and 4D X-ray micro-tomography for monitoring crack propagation in rocks","authors":"","doi":"10.1016/j.ijrmms.2024.105917","DOIUrl":null,"url":null,"abstract":"<div><div>Acoustic emission (AE) and 4D X-ray computed tomography (4D XCT) were used simultaneously to study crack initiation and propagation in two different types of quartz-rich sandstones during the four-point bending experiments. Statistical analysis of the AE response indicated the failure mechanisms and their dynamics. The characteristic changes observed in the AE response defined the timing of the bending interruptions for XCT scanning to reveal the development of the crack. It was possible to quantitatively describe the developing cracks in their dimensions and volume and relate this information to the rate of decrease in the post-peak region of the material response. It could be concluded that the combination and concurrent use of AE and XCT techniques represents a highly effective and reliable instrument for observation, description, analysis of the crack propagation process, and rock disintegration in detail at a microscale level. With regard to the specific sandstones studied, Mšené sandstone is softer, respectively, less brittle, while Kocbeře sandstone is characterised by a more brittle behaviour accompanied by an AE signal with higher amplitudes compared to those of Mšené.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136516092400282X/pdfft?md5=ee99e274dc9f9e375fe497f889fc5e0f&pid=1-s2.0-S136516092400282X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136516092400282X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic emission (AE) and 4D X-ray computed tomography (4D XCT) were used simultaneously to study crack initiation and propagation in two different types of quartz-rich sandstones during the four-point bending experiments. Statistical analysis of the AE response indicated the failure mechanisms and their dynamics. The characteristic changes observed in the AE response defined the timing of the bending interruptions for XCT scanning to reveal the development of the crack. It was possible to quantitatively describe the developing cracks in their dimensions and volume and relate this information to the rate of decrease in the post-peak region of the material response. It could be concluded that the combination and concurrent use of AE and XCT techniques represents a highly effective and reliable instrument for observation, description, analysis of the crack propagation process, and rock disintegration in detail at a microscale level. With regard to the specific sandstones studied, Mšené sandstone is softer, respectively, less brittle, while Kocbeře sandstone is characterised by a more brittle behaviour accompanied by an AE signal with higher amplitudes compared to those of Mšené.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.