Error analysis of the explicit-invariant energy quadratization (EIEQ) numerical scheme for solving the Allen–Cahn equation

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Computational and Applied Mathematics Pub Date : 2024-09-16 DOI:10.1016/j.cam.2024.116224
{"title":"Error analysis of the explicit-invariant energy quadratization (EIEQ) numerical scheme for solving the Allen–Cahn equation","authors":"","doi":"10.1016/j.cam.2024.116224","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the error analysis of a first-order, time-discrete scheme for solving the nonlinear Allen–Cahn equation. The discretization of the nonlinear potential is achieved through the EIEQ method, which employs an auxiliary variable to linearize the nonlinear double-well potential effectively. The energy stability of the scheme is demonstrated, along with its decoupled type implementation. Under a set of reasonable assumptions related to boundedness and continuity, an extensive error analysis is performed. This analysis results in the establishment of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> error bounds for the numerical solution. Furthermore, a variety of numerical examples are conducted to illustrate the accuracy of the EIEQ scheme, highlighting its effectiveness in addressing complex dynamical systems governed by the Allen–Cahn equation.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004734","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the error analysis of a first-order, time-discrete scheme for solving the nonlinear Allen–Cahn equation. The discretization of the nonlinear potential is achieved through the EIEQ method, which employs an auxiliary variable to linearize the nonlinear double-well potential effectively. The energy stability of the scheme is demonstrated, along with its decoupled type implementation. Under a set of reasonable assumptions related to boundedness and continuity, an extensive error analysis is performed. This analysis results in the establishment of L2 and H1 error bounds for the numerical solution. Furthermore, a variety of numerical examples are conducted to illustrate the accuracy of the EIEQ scheme, highlighting its effectiveness in addressing complex dynamical systems governed by the Allen–Cahn equation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于求解艾伦-卡恩方程的显式不变能量四分法(EIEQ)数值方案的误差分析
本文重点分析了求解非线性 Allen-Cahn 方程的一阶时间离散方案的误差。非线性势的离散化是通过 EIEQ 方法实现的,该方法采用了一个辅助变量来有效地线性化非线性双阱势。演示了该方案的能量稳定性及其解耦类型的实现。在一系列与有界性和连续性相关的合理假设下,进行了广泛的误差分析。通过分析,建立了数值解的 L2 和 H1 误差边界。此外,还通过各种数值示例说明了 EIEQ 方案的准确性,突出了它在处理受 Allen-Cahn 方程控制的复杂动力系统时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
期刊最新文献
Third order two-step Runge–Kutta–Chebyshev methods Finite difference methods for stochastic Helmholtz equation driven by white noise Poisson noise removal based on non-convex hybrid regularizers Robust H∞ control for LFC of discrete T–S fuzzy MAPS with DFIG and time-varying delays Fading regularization method for an inverse boundary value problem associated with the biharmonic equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1