Joseph R. Jepson , Chris C. Hegna , Eric D. Held , Carl R. Sovinec , J. Andrew Spencer , Eric C. Howell
{"title":"An analysis and successful benchmarking of the Chapman-Enskog-like (CEL) continuum kinetic closure approach algorithm in NIMROD","authors":"Joseph R. Jepson , Chris C. Hegna , Eric D. Held , Carl R. Sovinec , J. Andrew Spencer , Eric C. Howell","doi":"10.1016/j.cpc.2024.109382","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we formulate, analyze, and apply a numerical method for solving a Chapman-Enskog-like (CEL) continuum kinetic model for plasmas. It is shown that centering the heat flux at the beginning of the time step and the ion temperature at the end of the time step in the kinetic equation allows for a numerically-stable time advance of the coupled fluid-kinetic system. In addition, it is shown that numerical stability is impossible to achieve without explicitly enforcing key tenets of the CEL closure approach, in particular, that the number density (<em>n</em>), flow (<strong>u</strong>), and temperature (<em>T</em>) moments of the kinetic distortion remain small in time. We show that with a method to constrain these moments, it is possible to remove both the numerical growth and numerical damping from the linear modes. We apply the results from the linear stability analysis to allow for a numerically-stable fully nonlinear axisymmetric evolution of profiles in NIMROD, wherein we observe the asymptotic evolution of the flow in a DIII-D tokamak equilibrium (based on DIII-D ITER Baseline Scenario (IBS) discharge 174446 at 3390 ms). We compare the self-consistently computed results to analytics and to results from a previously benchmarked fixed-background <em>δf</em> implementation in NIMROD. Agreement with prediction is found for both the dynamics and asymptotics of the flow. This work demonstrates the first successful published benchmarking of the full CEL approach in a plasma fluid code.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"306 ","pages":"Article 109382"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003059","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we formulate, analyze, and apply a numerical method for solving a Chapman-Enskog-like (CEL) continuum kinetic model for plasmas. It is shown that centering the heat flux at the beginning of the time step and the ion temperature at the end of the time step in the kinetic equation allows for a numerically-stable time advance of the coupled fluid-kinetic system. In addition, it is shown that numerical stability is impossible to achieve without explicitly enforcing key tenets of the CEL closure approach, in particular, that the number density (n), flow (u), and temperature (T) moments of the kinetic distortion remain small in time. We show that with a method to constrain these moments, it is possible to remove both the numerical growth and numerical damping from the linear modes. We apply the results from the linear stability analysis to allow for a numerically-stable fully nonlinear axisymmetric evolution of profiles in NIMROD, wherein we observe the asymptotic evolution of the flow in a DIII-D tokamak equilibrium (based on DIII-D ITER Baseline Scenario (IBS) discharge 174446 at 3390 ms). We compare the self-consistently computed results to analytics and to results from a previously benchmarked fixed-background δf implementation in NIMROD. Agreement with prediction is found for both the dynamics and asymptotics of the flow. This work demonstrates the first successful published benchmarking of the full CEL approach in a plasma fluid code.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.