High moments of the SHE in the clustering regimes

IF 1.7 2区 数学 Q1 MATHEMATICS Journal of Functional Analysis Pub Date : 2024-09-16 DOI:10.1016/j.jfa.2024.110675
Li-Cheng Tsai
{"title":"High moments of the SHE in the clustering regimes","authors":"Li-Cheng Tsai","doi":"10.1016/j.jfa.2024.110675","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze the high moments of the Stochastic Heat Equation (SHE) via a transformation to the attractive Brownian Particles (BPs), which are Brownian motions interacting via pairwise attractive drift. In those scaling regimes where the particles tend to cluster, we prove a Large Deviation Principle (LDP) for the empirical measure of the attractive BPs. Under the delta(-like) initial condition, we characterize the unique minimizer of the rate function and relate the minimizer to the spacetime limit shapes of the Kardar–Parisi–Zhang (KPZ) equation in the upper tails. The results of this paper are used in the companion paper <span><span>[75]</span></span> to prove an <em>n</em>-point, upper-tail LDP for the KPZ equation and to characterize the corresponding spacetime limit shape.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110675"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400363X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the high moments of the Stochastic Heat Equation (SHE) via a transformation to the attractive Brownian Particles (BPs), which are Brownian motions interacting via pairwise attractive drift. In those scaling regimes where the particles tend to cluster, we prove a Large Deviation Principle (LDP) for the empirical measure of the attractive BPs. Under the delta(-like) initial condition, we characterize the unique minimizer of the rate function and relate the minimizer to the spacetime limit shapes of the Kardar–Parisi–Zhang (KPZ) equation in the upper tails. The results of this paper are used in the companion paper [75] to prove an n-point, upper-tail LDP for the KPZ equation and to characterize the corresponding spacetime limit shape.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类机制中的 SHE 高矩阵
我们分析了随机热方程(SHE)的高矩,将其转换为有吸引力的布朗粒子(BPs),即通过成对吸引力漂移相互作用的布朗运动。在粒子趋于聚集的缩放状态下,我们证明了吸引力布朗粒子经验度量的大偏差原理(LDP)。在 delta(-like)初始条件下,我们描述了速率函数的唯一最小值,并将该最小值与 Kardar-Parisi-Zhang (KPZ) 方程在上尾部的时空极限形状联系起来。本文的结果被用在同行论文[75]中,证明了 KPZ 方程的 n 点上尾 LDP,并描述了相应的时空极限形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
期刊最新文献
Editorial Board Editorial Board Normalized ground states for Schrödinger equations on metric graphs with nonlinear point defects Alberti's rank one theorem and quasiconformal mappings in metric measure spaces Bounds for the kernel of the (κ,a)-generalized Fourier transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1