{"title":"FastTS: Enabling Fault-Tolerant and Time-Sensitive Scheduling in Space-Terrestrial Integrated Networks","authors":"Guoyu Peng;Shuo Wang;Tao Huang;Fengtao Li;Kangzhe Zhao;Yudong Huang;Zehui Xiong","doi":"10.1109/JSAC.2024.3459008","DOIUrl":null,"url":null,"abstract":"The emerging space-terrestrial integrated network (STIN) assumes a pivotal role within the 6G vision, promising to deliver seamless global coverage and connectivity. Achieving advanced, high-reliability, and time-sensitive (TS) services in a resource-constrained and failure-prone space environment is critical, but also presents challenges. Existing space-terrestrial communication approaches either suffer from temporary link failures with unstable reliability, or intolerable service latency due to the extensive coverage and uneven traffic distribution. This paper presents FastTS, a heuristic resilient and performant scheduling strategy to achieve fault-tolerant and time-sensitive scheduling in futuristic STINs. First, we model the high-dynamic and failure-prone topology in space, and formulate the scheduling problem as a mixed non-linear problem with the objective of minimizing the average task completion time. To approach the optimal solution, joint time-variant routing and frame replication and elimination for reliability (FRER) redundancy under resource constraints are formally considered in our design. During the path-stable duration, FastTS prioritizes the multipath selection with higher redundancy scores, all while ensuring a bounded low latency for TS services based on time-sensitive networking (TSN) techniques. Specifically, our FastTS is divided into three phases: time-sensitive multipath generation (TMG), series-parallel redundancy scoring (SPRS), and SPRS-based time-variant routing (STR). Finally, simulation results show that FastTS exhibits outstanding performance improvements in terms of packet delay, scheduling success ratio, task completion time and packet loss rate, when compared to other state-of-the-art methods.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 12","pages":"3551-3565"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10689320/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The emerging space-terrestrial integrated network (STIN) assumes a pivotal role within the 6G vision, promising to deliver seamless global coverage and connectivity. Achieving advanced, high-reliability, and time-sensitive (TS) services in a resource-constrained and failure-prone space environment is critical, but also presents challenges. Existing space-terrestrial communication approaches either suffer from temporary link failures with unstable reliability, or intolerable service latency due to the extensive coverage and uneven traffic distribution. This paper presents FastTS, a heuristic resilient and performant scheduling strategy to achieve fault-tolerant and time-sensitive scheduling in futuristic STINs. First, we model the high-dynamic and failure-prone topology in space, and formulate the scheduling problem as a mixed non-linear problem with the objective of minimizing the average task completion time. To approach the optimal solution, joint time-variant routing and frame replication and elimination for reliability (FRER) redundancy under resource constraints are formally considered in our design. During the path-stable duration, FastTS prioritizes the multipath selection with higher redundancy scores, all while ensuring a bounded low latency for TS services based on time-sensitive networking (TSN) techniques. Specifically, our FastTS is divided into three phases: time-sensitive multipath generation (TMG), series-parallel redundancy scoring (SPRS), and SPRS-based time-variant routing (STR). Finally, simulation results show that FastTS exhibits outstanding performance improvements in terms of packet delay, scheduling success ratio, task completion time and packet loss rate, when compared to other state-of-the-art methods.