Polymorphism control of fast-sintered NASICON-type LiZr2(PO4)3†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-09-25 DOI:10.1039/D4TA04507F
Lin Lin and Kelsey B. Hatzell
{"title":"Polymorphism control of fast-sintered NASICON-type LiZr2(PO4)3†","authors":"Lin Lin and Kelsey B. Hatzell","doi":"10.1039/D4TA04507F","DOIUrl":null,"url":null,"abstract":"<p >Long processing times and high temperature sintering can lead to high energy intensities and costs for all solid state battery manufacturing. Fast-sintering methods that are compatible with air can potentially overcome these challenges. Dynamic pulses of electrified heat also provide a pathway for manipulating materials and material transformation pathways to provide more control over structural heterogeneity. Herein, we examine how ultra-fast sintering approaches impact polymorphism in NASICON-type solid electrolytes (<em>e.g.</em> LiZr<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>). The role of microstructure (<em>e.g.</em> porosity), the polymorphism in starting powders, and the presence of liquid sintering aids are all examined to understand how polymorphic phases can be tailored with fast-sintering approaches. Fast sintering techniques which decrease the loss of volatile lithium may enable high density solid electrolytes with tailored material phases.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ta/d4ta04507f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04507f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Long processing times and high temperature sintering can lead to high energy intensities and costs for all solid state battery manufacturing. Fast-sintering methods that are compatible with air can potentially overcome these challenges. Dynamic pulses of electrified heat also provide a pathway for manipulating materials and material transformation pathways to provide more control over structural heterogeneity. Herein, we examine how ultra-fast sintering approaches impact polymorphism in NASICON-type solid electrolytes (e.g. LiZr2(PO4)3). The role of microstructure (e.g. porosity), the polymorphism in starting powders, and the presence of liquid sintering aids are all examined to understand how polymorphic phases can be tailored with fast-sintering approaches. Fast sintering techniques which decrease the loss of volatile lithium may enable high density solid electrolytes with tailored material phases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速烧结 NASICON 型 LiZr3(PO4)3 的多态性控制
漫长的加工时间和高温烧结使得固体电解质的制造成本高昂且能源密集。在此,我们研究了一种空气兼容的快速烧结方法,可在几分钟内制造出 LiZr3(PO4)3 固体电解质陶瓷颗粒。通过超快烧结方法,可以进行系统研究,考察加工和材料转化途径如何影响 NASICON 型固体电解质的多态性。通过研究微观结构(如孔隙率)、生坯的初始多态性和液体烧结助剂的作用,可以了解如何利用快速烧结方法定制多态相。快速烧结技术可减少挥发性锂的损失,从而实现具有定制材料相的高密度固体电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Ordered crown-ether 2D framework based loose nanofiltration membranes for improved separation and stability Unlocking recent progress in niobium and vanadium carbide-based MXenes for sodium-ion batteries Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia A robust and adhesive anti-swelling hydrophobic ionogel with prolonged stability for strain and temperature sensors Pyroelectric effects inducing negative feedback boiling heat transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1