{"title":"MiR-204-5p overexpression abrogates Dacarbazine-induced senescence in melanoma cells in vivo MiR-204-5p abrogates senescence","authors":"Ekaterina Lapkina , Ivan Zinchenko , Viktoriya Kutcenko , Eugeniya Bondar , Andrey Kirichenko , Irina Yamskikh , Nadezhda Palkina , Tatiana Ruksha","doi":"10.1016/j.ncrna.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer cell drug resistance hinders significantly therapeutic modalities in oncology. Dacarbazine is chemotherapeutic agent traditionally used for melanoma treatment although it's effectiveness insufficient. In the present study we performed NGS-based transcriptomic profiling of B16 melanoma tumors after Dacarbazine treatment in vivo. Whole transcriptome sequencing revealed 34 differentially expressed genes most of them associated with drug resistance and apoptosis evading. In accordance to bionformatic analysis, 6 signaling cascades: “D-Amino acid metabolism”, “NF-kappa B signaling pathway”, “Phosphatidylinositol signaling system”, “P53 signaling pathway”, “IL-17 signaling pathway” and “Bile secretion” were enriched by differentially expressed genes. Next we provided a combined treatment by Dacarbazine and miR-204-5p mimic as miR-204-5p was considered previously implicated in cancer drug resistance. This approach lead to an increase of miR-204-5p expression in B16 melanoma cells in vivo that was accompanied by subsequent decrease in the expression of miR-204-5p target genes – <em>BCL2</em> and <em>SIRT1</em> in the primary tumors. MiR-204-5p overexpression with Dacarbazine application resulted in increased the weight, and volume of primary tumors and diminished the proportion of β-Galactosidase expression in melanoma B16-bearing mice. Taking together, our study revealed that although miR-204-5p showed antiproliferative capacities in vitro, it's mimic in combination with Dacarbazine is able to potentiate tumor growth triggering probably a switch from senescent to proliferative phenotype of malignant cells.</div></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"10 ","pages":"Pages 130-139"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024001422/pdfft?md5=0ce9497a2cf357a1c39c78b5715a8f14&pid=1-s2.0-S2468054024001422-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054024001422","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer cell drug resistance hinders significantly therapeutic modalities in oncology. Dacarbazine is chemotherapeutic agent traditionally used for melanoma treatment although it's effectiveness insufficient. In the present study we performed NGS-based transcriptomic profiling of B16 melanoma tumors after Dacarbazine treatment in vivo. Whole transcriptome sequencing revealed 34 differentially expressed genes most of them associated with drug resistance and apoptosis evading. In accordance to bionformatic analysis, 6 signaling cascades: “D-Amino acid metabolism”, “NF-kappa B signaling pathway”, “Phosphatidylinositol signaling system”, “P53 signaling pathway”, “IL-17 signaling pathway” and “Bile secretion” were enriched by differentially expressed genes. Next we provided a combined treatment by Dacarbazine and miR-204-5p mimic as miR-204-5p was considered previously implicated in cancer drug resistance. This approach lead to an increase of miR-204-5p expression in B16 melanoma cells in vivo that was accompanied by subsequent decrease in the expression of miR-204-5p target genes – BCL2 and SIRT1 in the primary tumors. MiR-204-5p overexpression with Dacarbazine application resulted in increased the weight, and volume of primary tumors and diminished the proportion of β-Galactosidase expression in melanoma B16-bearing mice. Taking together, our study revealed that although miR-204-5p showed antiproliferative capacities in vitro, it's mimic in combination with Dacarbazine is able to potentiate tumor growth triggering probably a switch from senescent to proliferative phenotype of malignant cells.
期刊介绍:
Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.