Modeling and control of heating and heat circulation in direct air capture system

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-09-17 DOI:10.1016/j.ces.2024.120745
{"title":"Modeling and control of heating and heat circulation in direct air capture system","authors":"","doi":"10.1016/j.ces.2024.120745","DOIUrl":null,"url":null,"abstract":"<div><div>Direct air capture (DAC) is a critical technology for mitigating climate change. However, the high heat consumption of temperature vacuum swing adsorption (TVSA)-based DAC processes hinders its widespread deployment. This study focuses on developing a control strategy to optimize the energy efficiency of the TVSA heating phase. A novel adsorbent temperature estimation method, validated through experimental data, was integrated into a cascaded PI controller with a fuzzy gain scheduler (FGS). Experimental results demonstrate that the proposed control strategy effectively regulates the heating process, achieving a potential energy saving of up to 14%. This work contributes to enhancing the feasibility and sustainability of DAC technologies.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009250924010455/pdfft?md5=937dff6a6e2f927345f1e905318751dc&pid=1-s2.0-S0009250924010455-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924010455","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Direct air capture (DAC) is a critical technology for mitigating climate change. However, the high heat consumption of temperature vacuum swing adsorption (TVSA)-based DAC processes hinders its widespread deployment. This study focuses on developing a control strategy to optimize the energy efficiency of the TVSA heating phase. A novel adsorbent temperature estimation method, validated through experimental data, was integrated into a cascaded PI controller with a fuzzy gain scheduler (FGS). Experimental results demonstrate that the proposed control strategy effectively regulates the heating process, achieving a potential energy saving of up to 14%. This work contributes to enhancing the feasibility and sustainability of DAC technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直接空气捕获系统中加热和热循环的建模与控制
直接空气捕集(DAC)是减缓气候变化的一项关键技术。然而,基于真空变温吸附(TVSA)的直接空气捕集(DAC)工艺的高热能消耗阻碍了它的广泛应用。本研究的重点是开发一种控制策略,以优化 TVSA 加热阶段的能效。通过实验数据验证的新型吸附剂温度估算方法被集成到带有模糊增益调度器(FGS)的级联 PI 控制器中。实验结果表明,所提出的控制策略能有效调节加热过程,实现高达 14% 的潜在节能效果。这项工作有助于提高 DAC 技术的可行性和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Influence of the gas phase on a large-scale bubble column fluid dynamics: Gas holdup, flow regime transitions, and bubble size distributions Insight into the mechanism of peroxymonosulfate activation with CuO nanosheets: Surface-bound peroxymonosulfate and radicals Vertical baffles in a fluidized bed reactor: Hydraulic assessment with a numerical and experimental approach Constructing CO2 capture nanotraps via tentacle-like covalent organic frameworks towards efficient CO2 separation in mixed matrix membrane Economic feasibility of the biorefinery processing bamboo residues with biphasic phenoxyethanol-acid pretreatment technology: Techno-economic analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1