Chuanlu Lin , Yiqiang Hu , Ze Lin , Longyu Du , Yixin Hu , Lizhi Ouyang , Xudong Xie , Peng Cheng , Jiewen Liao , Li Lu , Ruiyin Zeng , Ping Xia , Zhiyong Hou , Guohui Liu , Hankun Hu
{"title":"MMP-9 responsive hydrogel promotes diabetic wound healing by suppressing ferroptosis of endothelial cells","authors":"Chuanlu Lin , Yiqiang Hu , Ze Lin , Longyu Du , Yixin Hu , Lizhi Ouyang , Xudong Xie , Peng Cheng , Jiewen Liao , Li Lu , Ruiyin Zeng , Ping Xia , Zhiyong Hou , Guohui Liu , Hankun Hu","doi":"10.1016/j.bioactmat.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis plays a crucial role in the progression of diabetic wounds, suggesting potential therapeutic strategies to target ferroptosis. Transient receptor potential ankyrin 1 (TRPA1) is a non-selective calcium channel that acts as a receptor for a variety of physical or chemical stimuli. Cinnamaldehyde (CA) is a specific TRPA1 agonist. In in vitro experiments, we observed that high glucose (HG) treatment induced endothelial cell ferroptosis, impairing cell function. CA successfully inhibited endothelial cell ferroptosis, improving migration, proliferation, and tube formation. Further mechanistic studies showed that CA-activated TRPA1-induced Ca<sup>2+</sup> influx promoted the phosphorylation of calmodulin-dependent protein kinase II (CaMKII) and nuclear factor-E 2-related factor 2 (Nrf2) translocation, which contributed to the elevation of glutathione peroxidase 4 (GPX4), leading to the inhibition of endothelial cell ferroptosis. In addition, CA was incorporated into an MMP-9-responsive injectable duplex hybrid hydrogel (CA@HA-Gel), allowing its efficient sustained release into diabetic wounds in an inflammation-responsive manner. The results showed that CA@HA-Gel inhibited wound endothelial cell ferroptosis and significantly promoted diabetic wound healing. In summary, the results presented in this study emphasize the potential therapeutic application of CA@HA-Gel in the treatment of diseases associated with ferroptosis.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"43 ","pages":"Pages 240-254"},"PeriodicalIF":18.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452199X24003931/pdfft?md5=5bf0ac6e1742022c12ab6bd9c2b1a02c&pid=1-s2.0-S2452199X24003931-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24003931","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis plays a crucial role in the progression of diabetic wounds, suggesting potential therapeutic strategies to target ferroptosis. Transient receptor potential ankyrin 1 (TRPA1) is a non-selective calcium channel that acts as a receptor for a variety of physical or chemical stimuli. Cinnamaldehyde (CA) is a specific TRPA1 agonist. In in vitro experiments, we observed that high glucose (HG) treatment induced endothelial cell ferroptosis, impairing cell function. CA successfully inhibited endothelial cell ferroptosis, improving migration, proliferation, and tube formation. Further mechanistic studies showed that CA-activated TRPA1-induced Ca2+ influx promoted the phosphorylation of calmodulin-dependent protein kinase II (CaMKII) and nuclear factor-E 2-related factor 2 (Nrf2) translocation, which contributed to the elevation of glutathione peroxidase 4 (GPX4), leading to the inhibition of endothelial cell ferroptosis. In addition, CA was incorporated into an MMP-9-responsive injectable duplex hybrid hydrogel (CA@HA-Gel), allowing its efficient sustained release into diabetic wounds in an inflammation-responsive manner. The results showed that CA@HA-Gel inhibited wound endothelial cell ferroptosis and significantly promoted diabetic wound healing. In summary, the results presented in this study emphasize the potential therapeutic application of CA@HA-Gel in the treatment of diseases associated with ferroptosis.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.