{"title":"Bio-inspired classification and evolution of multirotor Micro Aerial Vehicles (MAVs): A comprehensive review","authors":"Syed Waqar Hameed , Nursultan Imanberdiyev , Efe Camci , Wei-Yun Yau , Mir Feroskhan","doi":"10.1016/j.robot.2024.104802","DOIUrl":null,"url":null,"abstract":"<div><div>Multirotor Micro Aerial Vehicles (MAVs) have become essential in many applications like surveillance, disaster management, and aerial inspection. The diverse demands of these applications have led to numerous design innovations, growing the MAV landscape substantially. However, such growth has made it challenging to understand the evolution and classification of MAV designs based on their functions and features. We address this challenge by introducing a novel, bio-inspired taxonomic classification framework for MAVs. Our framework spans six hierarchical ranks, each containing a diverse set of categories that classify MAVs from distinct design perspectives. It enables a proper comparison of the MAV designs in the literature, revealing their key similarities and differences. It also helps to trace the evolution of MAVs over time, identifying research trends and potential gaps. Lastly, it offers insights into future MAV design trajectories, providing a complete and clear understanding of the MAV design landscape.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104802"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024001866","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multirotor Micro Aerial Vehicles (MAVs) have become essential in many applications like surveillance, disaster management, and aerial inspection. The diverse demands of these applications have led to numerous design innovations, growing the MAV landscape substantially. However, such growth has made it challenging to understand the evolution and classification of MAV designs based on their functions and features. We address this challenge by introducing a novel, bio-inspired taxonomic classification framework for MAVs. Our framework spans six hierarchical ranks, each containing a diverse set of categories that classify MAVs from distinct design perspectives. It enables a proper comparison of the MAV designs in the literature, revealing their key similarities and differences. It also helps to trace the evolution of MAVs over time, identifying research trends and potential gaps. Lastly, it offers insights into future MAV design trajectories, providing a complete and clear understanding of the MAV design landscape.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.