Lorenzo Biancalana , Nicola Di Fidio , Domenico Licursi , Stefano Zacchini , Alessia Cinci , Anna Maria Raspolli Galletti , Fabio Marchetti , Claudia Antonetti
{"title":"New ruthenium(II) isocyanide catalysts for the transfer hydrogenation of ethyl levulinate to γ-valerolactone in C2-C6 alcohols","authors":"Lorenzo Biancalana , Nicola Di Fidio , Domenico Licursi , Stefano Zacchini , Alessia Cinci , Anna Maria Raspolli Galletti , Fabio Marchetti , Claudia Antonetti","doi":"10.1016/j.jcat.2024.115761","DOIUrl":null,"url":null,"abstract":"<div><div>Transfer hydrogenation (TH) processes are receiving great attention for biomass valorization and ruthenium(II) complexes are renowned TH catalysts both on laboratory and industrial scale. Only a few homogeneous catalytic precursors are available in the literature for the TH of ethyl levulinate (EL) to γ-valerolactone (GVL). Herein, starting from simple, commercially available isocyanides, two classes of air-stable ruthenium(II) complexes were synthesized and tested as catalytic precursors. First, an optimized preparation of Ru(II) <em>p</em>-cymene isocyanide complexes was developed. Then, the thermally induced <em>p</em>-cymene/DMSO substitution gave access to unprecedented ruthenium isocyanide-DMSO complexes. All the complexes were characterized and tested in TH of EL to GVL showing promising performances, adopting 2-propanol as hydrogen donor, a low catalyst (Ru) and co-catalyst (KOH) amount, working under microwave heating for 1 h at 150 °C. The most selective systems were also successfully tested with different biomass-derived alcohols, including 2-butanol. Finally, the recycling of the best catalyst was also investigated, thus improving the efficiency of the entire process.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"439 ","pages":"Article 115761"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021951724004743/pdfft?md5=673be9fd9f252c49bcf6d3a0636f7599&pid=1-s2.0-S0021951724004743-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724004743","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transfer hydrogenation (TH) processes are receiving great attention for biomass valorization and ruthenium(II) complexes are renowned TH catalysts both on laboratory and industrial scale. Only a few homogeneous catalytic precursors are available in the literature for the TH of ethyl levulinate (EL) to γ-valerolactone (GVL). Herein, starting from simple, commercially available isocyanides, two classes of air-stable ruthenium(II) complexes were synthesized and tested as catalytic precursors. First, an optimized preparation of Ru(II) p-cymene isocyanide complexes was developed. Then, the thermally induced p-cymene/DMSO substitution gave access to unprecedented ruthenium isocyanide-DMSO complexes. All the complexes were characterized and tested in TH of EL to GVL showing promising performances, adopting 2-propanol as hydrogen donor, a low catalyst (Ru) and co-catalyst (KOH) amount, working under microwave heating for 1 h at 150 °C. The most selective systems were also successfully tested with different biomass-derived alcohols, including 2-butanol. Finally, the recycling of the best catalyst was also investigated, thus improving the efficiency of the entire process.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.