Size-based spectrophotometric analysis of the Polana-Eulalia Complex

IF 2.5 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Icarus Pub Date : 2024-09-19 DOI:10.1016/j.icarus.2024.116322
L.T. McClure , J.P. Emery , C.A. Thomas , K.J. Walsh , R.K. Williams
{"title":"Size-based spectrophotometric analysis of the Polana-Eulalia Complex","authors":"L.T. McClure ,&nbsp;J.P. Emery ,&nbsp;C.A. Thomas ,&nbsp;K.J. Walsh ,&nbsp;R.K. Williams","doi":"10.1016/j.icarus.2024.116322","DOIUrl":null,"url":null,"abstract":"<div><div>The Polana-Eulalia Complex (PEC) is an Inner Main Belt, C-complex asteroid population that may be the source of the near-Earth asteroid spacecraft mission targets (101955) Bennu and (162173) Ryugu. Here, we report a size-based investigation of the visible (VIS; 0.47 —0.89 μm) spectrophotometric slopes of the PEC's constituent families, the “New Polana” and Eulalia Families. Using two releases of the Sloan Digital Sky Survey's Moving Object Catalog as well as the 3rd data release of the Gaia catalog, we present evidence of size-based slope variability within each family. We find that Eulalia family members exhibit lower average slopes than Polana family members in all catalogs' samples, particularly for objects &lt;9 km in diameter. We are unable to conclude that VIS slope distinguishability between the families is statistically significant, but we explore a potential cause of the bulk slope differences between the PEC families, in addition to providing commentary on size-slope trends generally.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"425 ","pages":"Article 116322"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003828","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Polana-Eulalia Complex (PEC) is an Inner Main Belt, C-complex asteroid population that may be the source of the near-Earth asteroid spacecraft mission targets (101955) Bennu and (162173) Ryugu. Here, we report a size-based investigation of the visible (VIS; 0.47 —0.89 μm) spectrophotometric slopes of the PEC's constituent families, the “New Polana” and Eulalia Families. Using two releases of the Sloan Digital Sky Survey's Moving Object Catalog as well as the 3rd data release of the Gaia catalog, we present evidence of size-based slope variability within each family. We find that Eulalia family members exhibit lower average slopes than Polana family members in all catalogs' samples, particularly for objects <9 km in diameter. We are unable to conclude that VIS slope distinguishability between the families is statistically significant, but we explore a potential cause of the bulk slope differences between the PEC families, in addition to providing commentary on size-slope trends generally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒度的波拉纳-尤利亚综合体分光光度分析
波拉纳-尤利亚复合体(Polana-Eulalia Complex,PEC)是一个内主带C复合体小行星群,可能是近地小行星任务目标(101955)贝努(Bennu)和(162173)龙宫(Ryugu)的来源。在此,我们报告了对 PEC 的组成家族--"新波拉纳 "家族和欧拉利亚家族--的可见光(VIS;0.47 -0.89 μm)分光光度斜率进行的基于尺寸的调查。利用两次发布的斯隆数字巡天活动天体目录以及第三次发布的盖亚星表数据,我们提出了每个科内基于大小的斜率变化证据。我们发现,在所有星表样本中,尤拉莉亚家族成员的平均斜率都低于波拉纳家族成员,尤其是直径为9千米的天体。我们无法断定各族之间的VIS斜率差异具有统计学意义,但我们探讨了PEC各族之间斜率差异的潜在原因,并对尺寸-斜率的总体趋势进行了评述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Icarus
Icarus 地学天文-天文与天体物理
CiteScore
6.30
自引率
18.80%
发文量
356
审稿时长
2-4 weeks
期刊介绍: Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.
期刊最新文献
Editorial Board Editorial Board Rotation period estimates for 14 asteroids with the Earth MOID less than 1.1 AU 322P/SOHO: The counterpart of a historical comet in 254 CE? Investigating formation processes of secondary sulfate minerals in the semi-arid climate of the Rio Puerco watershed, New Mexico using sulfur and oxygen isotopes – Implications for the origin of gypsum veins in Gale crater on Mars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1