{"title":"Robust model-based control and stability analysis of PMSM drive with DC-link voltage and parameter variations","authors":"Majid Mehrasa , Hamidreza Gholinezhadomran , Pouya Tarassodi , Eduardo M.G. Rodrigues , Hossein Salehfar","doi":"10.1016/j.rico.2024.100469","DOIUrl":null,"url":null,"abstract":"<div><div>To ensure a stable operation of Permanent Magnet Synchronous Motor (PMSM) drive under both DC link voltage and parameter variations, a robust control technique based on a new dynamic model that includes both drive’s and motor’s specifications is proposed in this paper. In the proposed controller, the first component of the drive’s control law consists of the d-component error of the stator current, and the second one is shaped based on the error in the square value of q-component of the stator current. To further deal with the dynamic alterations of the drive system, compensators are designed to reduce the adverse effects of rotor angular frequency variations and the difference between electrical and load torque errors. Another compensator based on the drive’s output power error is also placed at the q-component of the proposed control law. Moreover, a general operation curve (GOC) for the stator current is introduced to further assess the operation of the PMSM. In the next step, a comprehensive stability analysis verifying the stable operation of both d- and q-components of the stator current is performed using two closed-loop descriptions of the proposed control strategy. Several simulation results in MATLAB/SIMULINK environment are provided to verify the validity of the proposed control technique under various dynamic scenarios. It is worth mentioning that comparative results show that the proposed control technique compared to conventional PI controller has enabled the PMSM speed and torque to reach its 50% and 95% of their desirable values with respectively 42.9% and 28.6% less time. Also, the PMSM speed and torque responses due to proposed control technique have 75% less undershoot compared to conventional PI controller.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"17 ","pages":"Article 100469"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000997/pdfft?md5=567ae07bd96928418e96a307086f6add&pid=1-s2.0-S2666720724000997-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
To ensure a stable operation of Permanent Magnet Synchronous Motor (PMSM) drive under both DC link voltage and parameter variations, a robust control technique based on a new dynamic model that includes both drive’s and motor’s specifications is proposed in this paper. In the proposed controller, the first component of the drive’s control law consists of the d-component error of the stator current, and the second one is shaped based on the error in the square value of q-component of the stator current. To further deal with the dynamic alterations of the drive system, compensators are designed to reduce the adverse effects of rotor angular frequency variations and the difference between electrical and load torque errors. Another compensator based on the drive’s output power error is also placed at the q-component of the proposed control law. Moreover, a general operation curve (GOC) for the stator current is introduced to further assess the operation of the PMSM. In the next step, a comprehensive stability analysis verifying the stable operation of both d- and q-components of the stator current is performed using two closed-loop descriptions of the proposed control strategy. Several simulation results in MATLAB/SIMULINK environment are provided to verify the validity of the proposed control technique under various dynamic scenarios. It is worth mentioning that comparative results show that the proposed control technique compared to conventional PI controller has enabled the PMSM speed and torque to reach its 50% and 95% of their desirable values with respectively 42.9% and 28.6% less time. Also, the PMSM speed and torque responses due to proposed control technique have 75% less undershoot compared to conventional PI controller.