Dominique S. Gilbert , Brett A. Hayhurst , Sarah Grubisich , Nick Schneider , Olivia Martin , Christopher DeNyse , Kristina M. Chomiak , Anna Christina Tyler , Nathan C. Eddingsaas
{"title":"A bellwether for microplastic in wetland catchments in the Great Lakes region","authors":"Dominique S. Gilbert , Brett A. Hayhurst , Sarah Grubisich , Nick Schneider , Olivia Martin , Christopher DeNyse , Kristina M. Chomiak , Anna Christina Tyler , Nathan C. Eddingsaas","doi":"10.1016/j.jglr.2024.102411","DOIUrl":null,"url":null,"abstract":"<div><div>This study is intended as a bellwether for the occurrence of microplastics (MPs) in Great Lakes wetlands. In 2020, sediment, surface water, and atmospheric deposition samples were collected from wetland catchments in or near five National Wildlife Refuges (NWRs) in the Great Lakes region: Horicon-WI, Seney-MI, Shiawassee-MI, Ottawa-OH, and Montezuma-NY. Sediment and surface water samples were taken from river, stream, and canal inflows and outflows to and from wetland areas. Atmospheric deposition samples were collected in carboys placed near established rain gauges. These sample sites were chosen as indicators of MP deposition into and out of the region’s wetland systems. MPs (100 μm–4 mm surface water samples; 63 μm–4 mm sediment and atmospheric deposition samples) were extracted from each sample, enumerated, and categorized by particle morphology and polymer type. Average MP particle abundances in the sediment and surface water samples ranged from 344 to 538 particles kg<sup>−1</sup> (dry weight) and 2–68 particles m<sup>−3</sup>, respectively. Atmospheric MP deposition ranged from 5.8 to 22.6 particles m<sup>−2</sup> d<sup>−1</sup>. Fibers were the most abundant MP particle type found in each sample type (sediment, surface water, and atmospheric deposition), followed by fragments. These results suggest that input and retention of MPs are pervasive in the Great Lakes region and surrounding wetland areas.</div></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 5","pages":"Article 102411"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024001709","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study is intended as a bellwether for the occurrence of microplastics (MPs) in Great Lakes wetlands. In 2020, sediment, surface water, and atmospheric deposition samples were collected from wetland catchments in or near five National Wildlife Refuges (NWRs) in the Great Lakes region: Horicon-WI, Seney-MI, Shiawassee-MI, Ottawa-OH, and Montezuma-NY. Sediment and surface water samples were taken from river, stream, and canal inflows and outflows to and from wetland areas. Atmospheric deposition samples were collected in carboys placed near established rain gauges. These sample sites were chosen as indicators of MP deposition into and out of the region’s wetland systems. MPs (100 μm–4 mm surface water samples; 63 μm–4 mm sediment and atmospheric deposition samples) were extracted from each sample, enumerated, and categorized by particle morphology and polymer type. Average MP particle abundances in the sediment and surface water samples ranged from 344 to 538 particles kg−1 (dry weight) and 2–68 particles m−3, respectively. Atmospheric MP deposition ranged from 5.8 to 22.6 particles m−2 d−1. Fibers were the most abundant MP particle type found in each sample type (sediment, surface water, and atmospheric deposition), followed by fragments. These results suggest that input and retention of MPs are pervasive in the Great Lakes region and surrounding wetland areas.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.