Joint inference of discrete cell types and continuous type-specific variability in single-cell datasets with MMIDAS

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-09-23 DOI:10.1038/s43588-024-00683-8
Yeganeh Marghi, Rohan Gala, Fahimeh Baftizadeh, Uygar Sümbül
{"title":"Joint inference of discrete cell types and continuous type-specific variability in single-cell datasets with MMIDAS","authors":"Yeganeh Marghi, Rohan Gala, Fahimeh Baftizadeh, Uygar Sümbül","doi":"10.1038/s43588-024-00683-8","DOIUrl":null,"url":null,"abstract":"Reproducible definition and identification of cell types is essential to enable investigations into their biological function and to understand their relevance in the context of development, disease and evolution. Current approaches model variability in data as continuous latent factors, followed by clustering as a separate step, or immediately apply clustering on the data. We show that such approaches can suffer from qualitative mistakes in identifying cell types robustly, particularly when the number of such cell types is in the hundreds or even thousands. Here we propose an unsupervised method, Mixture Model Inference with Discrete-coupled AutoencoderS (MMIDAS), which combines a generalized mixture model with a multi-armed deep neural network to jointly infer the discrete type and continuous type-specific variability. Using four recent datasets of brain cells spanning different technologies, species and conditions, we demonstrate that MMIDAS can identify reproducible cell types and infer cell type-dependent continuous variability in both unimodal and multimodal datasets. Clustering in high-dimensional spaces with a large number of clusters and identifying common aspects of within-cluster variability remain challenging. Here the authors develop an unsupervised method for this purpose and demonstrate it on brain single-cell datasets.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 9","pages":"706-722"},"PeriodicalIF":12.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00683-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Reproducible definition and identification of cell types is essential to enable investigations into their biological function and to understand their relevance in the context of development, disease and evolution. Current approaches model variability in data as continuous latent factors, followed by clustering as a separate step, or immediately apply clustering on the data. We show that such approaches can suffer from qualitative mistakes in identifying cell types robustly, particularly when the number of such cell types is in the hundreds or even thousands. Here we propose an unsupervised method, Mixture Model Inference with Discrete-coupled AutoencoderS (MMIDAS), which combines a generalized mixture model with a multi-armed deep neural network to jointly infer the discrete type and continuous type-specific variability. Using four recent datasets of brain cells spanning different technologies, species and conditions, we demonstrate that MMIDAS can identify reproducible cell types and infer cell type-dependent continuous variability in both unimodal and multimodal datasets. Clustering in high-dimensional spaces with a large number of clusters and identifying common aspects of within-cluster variability remain challenging. Here the authors develop an unsupervised method for this purpose and demonstrate it on brain single-cell datasets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 MMIDAS 联合推断单细胞数据集中的离散细胞类型和连续类型特异性变异性
要研究细胞类型的生物功能,了解它们在发育、疾病和进化过程中的相关性,就必须对细胞类型进行可重复的定义和识别。目前的方法是将数据中的变异性建模为连续的潜在因素,然后将聚类作为一个单独的步骤,或者立即对数据进行聚类。我们发现,这些方法在稳健识别细胞类型时可能会出现定性错误,尤其是当细胞类型的数量达到数百甚至数千时。在这里,我们提出了一种无监督方法--离散耦合自动编码器混合模型推断法(MMIDAS),它将广义混合模型与多臂深度神经网络相结合,共同推断离散类型和连续类型的特异性变化。我们利用最近四个跨越不同技术、物种和条件的脑细胞数据集,证明 MMIDAS 可以在单模态和多模态数据集中识别可重现的细胞类型,并推断依赖于细胞类型的连续变异性。在具有大量聚类的高维空间中进行聚类以及识别聚类内变异性的共同方面仍然具有挑战性。作者为此开发了一种无监督方法,并在大脑单细胞数据集上进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Harnessing the power of DNA for computing Collective deliberation driven by AI Harnessing deep learning to build optimized ligands MassiveFold: unveiling AlphaFold’s hidden potential with optimized and parallelized massive sampling A deep learning approach for rational ligand generation with toxicity control via reactive building blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1