Rectifying Heterointerface Facilitated C−N Coupling Dynamics Enables Efficient Urea Electrosynthesis Under Ultralow Potentials

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-25 DOI:10.1002/anie.202413534
Mingyu Cheng, Shao Wang, Zechuan Dai, Prof. Jing Xia, Bocheng Zhang, Pingyi Feng, Yin Zhu, Yangyang Zhang, Prof. Genqiang Zhang
{"title":"Rectifying Heterointerface Facilitated C−N Coupling Dynamics Enables Efficient Urea Electrosynthesis Under Ultralow Potentials","authors":"Mingyu Cheng,&nbsp;Shao Wang,&nbsp;Zechuan Dai,&nbsp;Prof. Jing Xia,&nbsp;Bocheng Zhang,&nbsp;Pingyi Feng,&nbsp;Yin Zhu,&nbsp;Yangyang Zhang,&nbsp;Prof. Genqiang Zhang","doi":"10.1002/anie.202413534","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic C−N coupling for urea synthesis from carbon dioxide (CO<sub>2</sub>) and nitrate (NO<sub>3</sub><sup>−</sup>) offers a sustainable alternative to the traditional Bosch-Meiser method. However, the complexity of intermediates in co-reduction hampers simultaneous improvement in urea yield and Faradaic efficiency (FE). Herein, we developed a Cu/Cu<sub>2</sub>O Mott–Schottky catalyst with nanoscale rectifying heterointerfaces through precise controllable in situ electroreduction of Cu<sub>2</sub>O nanowires, achieving notable FE (32.6–47.0 %) and substantial yields (6.08–30.4 μmol h<sup>−1</sup> cm<sup>−2</sup>) across a broad range of ultralow applied potentials (0 to −0.3 V vs. RHE). Operando synchrotron radiation-Fourier transform infrared spectroscopy (SR-FTIR) confirmed the formation of *CO intermediates and C−N bonds, subsequently density functional theory (DFT) calculations deciphered that the Cu/Cu<sub>2</sub>O rectifying heterointerface modulated *CO adsorption, significantly enhancing subsequent C−N coupling dynamics between *CO and *NOH intermediates. This work not only provides a groundbreaking and advanced pathway for C−N coupling, but also offers deep insights into copper-based heterointerface catalysts for urea synthesis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202413534","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic C−N coupling for urea synthesis from carbon dioxide (CO2) and nitrate (NO3) offers a sustainable alternative to the traditional Bosch-Meiser method. However, the complexity of intermediates in co-reduction hampers simultaneous improvement in urea yield and Faradaic efficiency (FE). Herein, we developed a Cu/Cu2O Mott–Schottky catalyst with nanoscale rectifying heterointerfaces through precise controllable in situ electroreduction of Cu2O nanowires, achieving notable FE (32.6–47.0 %) and substantial yields (6.08–30.4 μmol h−1 cm−2) across a broad range of ultralow applied potentials (0 to −0.3 V vs. RHE). Operando synchrotron radiation-Fourier transform infrared spectroscopy (SR-FTIR) confirmed the formation of *CO intermediates and C−N bonds, subsequently density functional theory (DFT) calculations deciphered that the Cu/Cu2O rectifying heterointerface modulated *CO adsorption, significantly enhancing subsequent C−N coupling dynamics between *CO and *NOH intermediates. This work not only provides a groundbreaking and advanced pathway for C−N coupling, but also offers deep insights into copper-based heterointerface catalysts for urea synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整流异质界面促进 C-N 耦合动力学实现超低电位下的高效尿素电合成
以二氧化碳(CO2)和硝酸盐(NO3-)为原料合成尿素的电催化 C-N 偶联法为传统的 Bosch-Meiser 方法提供了一种可持续的替代方法。然而,共还原过程中中间产物的复杂性阻碍了尿素产量和法拉第效率(FE)的同步提高。在此,我们通过对 Cu2O 纳米线进行精确可控的原位电还原,开发出了一种具有纳米级整流异质界面的 Cu/Cu2O Mott-Schottky 催化剂,在广泛的超低应用电位(0 至 -0.3 V 对 RHE)范围内实现了显著的 FE(32.6-47.0%)和可观的产率(6.08-30.4 μmol h-1 cm-2)。操作同步辐射-傅立叶变换红外光谱(SR-FTIR)证实了*CO中间体和C-N键的形成,随后的密度泛函理论(DFT)计算破译了Cu/Cu2O整流异质表面对*CO吸附的调节作用,显著增强了随后*CO和*NOH中间体之间的C-N耦合动力学。这项工作不仅为 C-N 偶联提供了一种开创性的先进途径,还为铜基异质界面催化剂在尿素合成中的应用提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
N-Heterocyclic Carbene Monolayers on Nickel, Iron, and Steel by a Radical-to-Carbene Strategy. Amino Acid Platform for Poly(amino ester)s: Controlled Ring-Opening Polymerization, Complete Recyclability, and Tunable Polymerizability/Depolymerizability. Mesoporous Engineering of Single-Atom Catalyst for Industry-Level Electrocatalytic CO2 Reduction in Membrane Electrode Assemblies. Steering Pulsed Electrochemistry Selectivity Toward Singlet Oxygen via Dynamic Intermediate Management. Yb-Doped Cu-Based Catalyst Boosting Electrochemical CO2-to-C2+ Reduction Across pH Range at Ampere-Level Current Density.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1