{"title":"Phases of Progression: Students’ meaning-making of Epigenetic Visual Representations within and between Levels of Organization","authors":"Annika Thyberg, Konrad Schönborn, Niklas Gericke","doi":"10.1007/s11165-024-10196-z","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the progression of students’ meaning-making of epigenetic phenomena while discussing multiple visual representations depicted at different levels of biological organization. Semi-structured focus group sessions involving ninth-grade students (aged 15-16) from a Swedish lower secondary school were video recorded. Students’ meaning-making with regard to form, function and transfer of scientific ideas was explored by analyzing students’ physical pointing and verbal utterances while interacting with and discussing the epigenetic visual representations. The study uncovered four phases of progression in students’ meaning-making. In phase 1, students’ focus is on unpacking scientific ideas within a single representation. In phase 2, students apply and transfer scientific ideas between different visual representations at the same organizational level. In phase 3, their meaning-making develops into linking between various levels of organization. Here, downward linking, from higher to lower levels, relies on form descriptions that limit the transfer of scientific ideas. In contrast, upward linking, from lower to higher organizational levels, relies on both descriptions of form and functional explanations, which facilitates the transfer of scientific ideas. Finally, in Phase 4, and manifested as “yo-yo reasoning”, students engage in a dynamic and repeated process of downward and upward linking that expresses a coherent understanding of epigenetics. The study findings underscore the significance of recognizing progression phases in facilitating students’ meaning-making of multiple representations of epigenetic phenomena. Future research could expand on these insights by investigating students’ meaning-making across other science education domains.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10196-z","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the progression of students’ meaning-making of epigenetic phenomena while discussing multiple visual representations depicted at different levels of biological organization. Semi-structured focus group sessions involving ninth-grade students (aged 15-16) from a Swedish lower secondary school were video recorded. Students’ meaning-making with regard to form, function and transfer of scientific ideas was explored by analyzing students’ physical pointing and verbal utterances while interacting with and discussing the epigenetic visual representations. The study uncovered four phases of progression in students’ meaning-making. In phase 1, students’ focus is on unpacking scientific ideas within a single representation. In phase 2, students apply and transfer scientific ideas between different visual representations at the same organizational level. In phase 3, their meaning-making develops into linking between various levels of organization. Here, downward linking, from higher to lower levels, relies on form descriptions that limit the transfer of scientific ideas. In contrast, upward linking, from lower to higher organizational levels, relies on both descriptions of form and functional explanations, which facilitates the transfer of scientific ideas. Finally, in Phase 4, and manifested as “yo-yo reasoning”, students engage in a dynamic and repeated process of downward and upward linking that expresses a coherent understanding of epigenetics. The study findings underscore the significance of recognizing progression phases in facilitating students’ meaning-making of multiple representations of epigenetic phenomena. Future research could expand on these insights by investigating students’ meaning-making across other science education domains.
期刊介绍:
2020 Five-Year Impact Factor: 4.021
2020 Impact Factor: 5.439
Ranking: 107/1319 (Education) – Scopus
2020 CiteScore 34.7 – Scopus
Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership.
RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal.
You should consider submitting your manscript to RISE if your research:
Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and
Advances our knowledge in science education research rather than reproducing what we already know.
RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted.
The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers.
Empircal contributions are:
Theoretically or conceptually grounded;
Relevant to science education theory and practice;
Highlight limitations of the study; and
Identify possible future research opportunities.
From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks.
Before you submit your manuscript to RISE, please consider the following checklist. Your paper is:
No longer than 6000 words, including references.
Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability;
Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education;
Internationalised in the sense that your work has relevance beyond your context to a broader audience; and
Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE.
While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.