Light-Armed Nitric Oxide-Releasing Micromotor In Vivo

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-09-25 DOI:10.1021/acs.nanolett.4c03120
Tiange Zhang, Haojiang Ren, Haifeng Qin, Xiaoshuai Liu, Baojun Li, Xianchuang Zheng
{"title":"Light-Armed Nitric Oxide-Releasing Micromotor In Vivo","authors":"Tiange Zhang, Haojiang Ren, Haifeng Qin, Xiaoshuai Liu, Baojun Li, Xianchuang Zheng","doi":"10.1021/acs.nanolett.4c03120","DOIUrl":null,"url":null,"abstract":"The delivery of NO at a high spatiotemporal precision is important but still challenging for existing NO-releasing platforms due to the lack of precise motion control and limited biomedical functions. In this work, we propose an alternative strategy for developing the light-armed nitric oxide-releasing micromotor (LaNorM), in which a main light beam was employed to navigate the microparticle and stimulate NO release and an auxiliary light beam was used to cooperate with the released NO to act as a remotely controlled scalpel for cell separation. Benefiting from the advantages of fully controlled locomotion, photostimulated NO release, and microsurgery ability at the single-cell level, the proposed LaNorM could enable a series of biomedical applications <i>in vivo</i>, including the separation of flowing emboli, selective removal of a specific thrombus, and inhibition of thrombus growth, which may provide new insight into the precise delivery of NO and the treatment of cardiovascular diseases.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03120","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The delivery of NO at a high spatiotemporal precision is important but still challenging for existing NO-releasing platforms due to the lack of precise motion control and limited biomedical functions. In this work, we propose an alternative strategy for developing the light-armed nitric oxide-releasing micromotor (LaNorM), in which a main light beam was employed to navigate the microparticle and stimulate NO release and an auxiliary light beam was used to cooperate with the released NO to act as a remotely controlled scalpel for cell separation. Benefiting from the advantages of fully controlled locomotion, photostimulated NO release, and microsurgery ability at the single-cell level, the proposed LaNorM could enable a series of biomedical applications in vivo, including the separation of flowing emboli, selective removal of a specific thrombus, and inhibition of thrombus growth, which may provide new insight into the precise delivery of NO and the treatment of cardiovascular diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体内光臂一氧化氮释放微马达
高时空精度地释放一氧化氮非常重要,但由于缺乏精确的运动控制和有限的生物医学功能,现有的一氧化氮释放平台仍面临挑战。在这项工作中,我们提出了开发光臂一氧化氮释放微马达(LaNorM)的另一种策略,即利用主光束导航微粒子并刺激一氧化氮释放,同时利用辅助光束与释放的一氧化氮配合,充当细胞分离的遥控手术刀。由于具有完全可控运动、光刺激 NO 释放和单细胞水平显微手术能力等优点,拟议的 LaNorM 可在体内实现一系列生物医学应用,包括分离流动的栓子、选择性清除特定血栓和抑制血栓生长,从而为精确输送 NO 和治疗心血管疾病提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. Octahedral vs Tiara-like Pd6(SR)12 Clusters. Scalable Multistep Imprinting of Multiplexed Optical Anti-counterfeiting Patterns with Hierarchical Structures. Transcutaneous Immunization of 1D Rod-Like Tobacco-Mosaic-Virus-Based Peptide Vaccine via Tip-Loaded Dissolving Microneedles. Vanadate-Mediated Mismatch Configuration over the Reconstructed Nickel-Iron Electrocatalyst for Boosting Alkaline Oxygen Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1