Chonglong Zhong, Kunhong Hu, Yong Xu, Enzhu Hu, Xianguo Hu
{"title":"Lubrication antagonism mechanism of nano-MoS2 and soot particles in ester base oil","authors":"Chonglong Zhong, Kunhong Hu, Yong Xu, Enzhu Hu, Xianguo Hu","doi":"10.1007/s40544-024-0904-5","DOIUrl":null,"url":null,"abstract":"<p>Spherical nano-MoS<sub>2</sub> (S-MoS<sub>2</sub>) has excellent lubricating properties and potential application value in engine oil additives. Engine soot can enter the engine oil, so the tribological interaction between S-MoS<sub>2</sub> and diesel combustion soot (DCS) should be investigated. In this study, DCS was used to simulate engine soot. The interaction was investigated in dioctyl sebacate (DOS), and the interaction mechanism was full characterized. Results showed that S-MoS<sub>2</sub> and DCS had obvious antagonism effects on lubrication. The 0.5% S-MoS<sub>2</sub> exhibited good lubricating properties in DOS, which could reduce friction by ∼22% and wear by ∼54%. However, after 0.5% S-MoS<sub>2</sub> was added to the 0.5% DCS contaminated DOS, the lubrication performance was not improved and was even worse than that without S-MoS<sub>2</sub>. When S-MoS<sub>2</sub> was added for DOS lubrication, a tribofilm containing MoS<sub>2</sub> formed on the friction surface, but simultaneously adding 0.5% DCS resulted in the disappearance of the MoS<sub>2</sub> tribofilm. Moreover, under the action of friction heat, DCS and S-MoS<sub>2</sub> could form hard Mo<sub><i>x</i></sub>C<sub><i>y</i></sub>, thereby increasing abrasive wear. Finally, a preliminary deantagonism method was provided. After 2.0% zinc isooctyl dithiophosphate was added to the above antagonistic system, the friction coefficient did not show visible changes, but the wear recovered to a level close to that when only S-MoS<sub>2</sub> was added. The antiantagonism method is not very satisfactory and some more efficient methods need to be further explored.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0904-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spherical nano-MoS2 (S-MoS2) has excellent lubricating properties and potential application value in engine oil additives. Engine soot can enter the engine oil, so the tribological interaction between S-MoS2 and diesel combustion soot (DCS) should be investigated. In this study, DCS was used to simulate engine soot. The interaction was investigated in dioctyl sebacate (DOS), and the interaction mechanism was full characterized. Results showed that S-MoS2 and DCS had obvious antagonism effects on lubrication. The 0.5% S-MoS2 exhibited good lubricating properties in DOS, which could reduce friction by ∼22% and wear by ∼54%. However, after 0.5% S-MoS2 was added to the 0.5% DCS contaminated DOS, the lubrication performance was not improved and was even worse than that without S-MoS2. When S-MoS2 was added for DOS lubrication, a tribofilm containing MoS2 formed on the friction surface, but simultaneously adding 0.5% DCS resulted in the disappearance of the MoS2 tribofilm. Moreover, under the action of friction heat, DCS and S-MoS2 could form hard MoxCy, thereby increasing abrasive wear. Finally, a preliminary deantagonism method was provided. After 2.0% zinc isooctyl dithiophosphate was added to the above antagonistic system, the friction coefficient did not show visible changes, but the wear recovered to a level close to that when only S-MoS2 was added. The antiantagonism method is not very satisfactory and some more efficient methods need to be further explored.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.