{"title":"Dataset on thermal conductivity of composted olive cake (COC)","authors":"Adnan Khdair","doi":"10.1016/j.dib.2024.110939","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal properties play a critical role in the compost used as a soil amendment for different agricultural applications especially for green roof buildings. Despite this importance, there remains insufficient information on thermal conductivity of composted olive cake (COC), K, and how it is influenced by bulk its density and water content. This shows how thermal conductivity (K) is affected by these two parameters and the potential use of COC as cheap padding in geothermal heat storage and green roof building applications. Thermal conductivities of 30 samples of (COC) were measured experimentally at different moisture contents and bulk densities using a hot wire technique. The results revealed that thermal conductivity exhibits a linear increase as both bulk density and water content increased. It increased from 0.10 to 0.60 W/(m K) at saturation levels ranging from dry to 90 %. The highest thermal conductivity of 0.60 W/m K was revealed at a water content of 90 %. Therefore, (COC) might be used as an inexpensive padding in geothermal heat storage applications and as an eco-friendly insulation pad in green- roof buildings, leading to passive energy savings. Overall, the study provides important insights into the thermal properties of COC and its potential as a sustainable insulation material.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924009028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal properties play a critical role in the compost used as a soil amendment for different agricultural applications especially for green roof buildings. Despite this importance, there remains insufficient information on thermal conductivity of composted olive cake (COC), K, and how it is influenced by bulk its density and water content. This shows how thermal conductivity (K) is affected by these two parameters and the potential use of COC as cheap padding in geothermal heat storage and green roof building applications. Thermal conductivities of 30 samples of (COC) were measured experimentally at different moisture contents and bulk densities using a hot wire technique. The results revealed that thermal conductivity exhibits a linear increase as both bulk density and water content increased. It increased from 0.10 to 0.60 W/(m K) at saturation levels ranging from dry to 90 %. The highest thermal conductivity of 0.60 W/m K was revealed at a water content of 90 %. Therefore, (COC) might be used as an inexpensive padding in geothermal heat storage applications and as an eco-friendly insulation pad in green- roof buildings, leading to passive energy savings. Overall, the study provides important insights into the thermal properties of COC and its potential as a sustainable insulation material.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.