{"title":"Exact constraint design of bridge-type displacement flexure amplifier","authors":"","doi":"10.1016/j.mechmachtheory.2024.105799","DOIUrl":null,"url":null,"abstract":"<div><div>Bridge-type amplifiers are commonly used to increase the effective actuation stroke of piezoelectric stack actuators owing to their compact size. However, the traditional bridge-type amplifier has an unconstrained degree-of-freedom, which yields large parasitic motions when subject to offset loads and induces dynamic performance losses related to underconstrained resonance. This work presents an exact constraint design (ECD) of bridge-type amplifier, in which a semi-bridge is introduced for both the lower bridge and the upper bridge on the basis of the traditional bridge-type amplifier. A holistic theoretical model is established for the whole bridge-type amplifier without reducing it to a half or even a quarter by taking advantage of structural symmetry. The model is generalized so that it can be used for modeling the traditional, the compound and the ECD amplifiers. Based on the model, three different bridge-type amplifiers considering manufacturing errors are modeled and compared, and the results show that the ECD amplifier is more precise in achieving desired motion and more robust against manufacturing imperfections. All the results are verified by those of the finite element models.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X2400226X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bridge-type amplifiers are commonly used to increase the effective actuation stroke of piezoelectric stack actuators owing to their compact size. However, the traditional bridge-type amplifier has an unconstrained degree-of-freedom, which yields large parasitic motions when subject to offset loads and induces dynamic performance losses related to underconstrained resonance. This work presents an exact constraint design (ECD) of bridge-type amplifier, in which a semi-bridge is introduced for both the lower bridge and the upper bridge on the basis of the traditional bridge-type amplifier. A holistic theoretical model is established for the whole bridge-type amplifier without reducing it to a half or even a quarter by taking advantage of structural symmetry. The model is generalized so that it can be used for modeling the traditional, the compound and the ECD amplifiers. Based on the model, three different bridge-type amplifiers considering manufacturing errors are modeled and compared, and the results show that the ECD amplifier is more precise in achieving desired motion and more robust against manufacturing imperfections. All the results are verified by those of the finite element models.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry