Deep-learning-based generative design for optimal reactive silencers

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-09-19 DOI:10.1016/j.ijmecsci.2024.109736
{"title":"Deep-learning-based generative design for optimal reactive silencers","authors":"","doi":"10.1016/j.ijmecsci.2024.109736","DOIUrl":null,"url":null,"abstract":"<div><div>A deep-learning-based generative design method is proposed to improve the frequency-dependent characteristics of a reactive silencer, and it has been validated both numerically and experimentally. The noise attenuation performance of the reactive silencer is evaluated with its transmission loss (TL), which varies with frequency and strongly depends on the partition layout inside the reactive silencer. The artificial neural network model for the generative design of the reactive silencer consists of three subnetwork models: the generator, predictor, and converter. The generator model created numerous partition layouts, and their TL curves were estimated using the predictor model. A converter model was developed to identify the frequency-dependent characteristics of the TL curves in a low-dimensional latent space. The latent space was extensively investigated to successfully select the optimal partition layouts satisfying given design requirements, including the target shape of the TL curve and its averaged target TL value. The effectiveness of the proposed method was demonstrated by applying it to three reactive silencer design problems with different design requirements. Among the three optimal silencers, one was physically investigated, and its noise attenuation performance was validated with an acoustic experiment. Because the artificial neural network model of the proposed method was developed for a normalized silencer and requires no prior knowledge of acoustics, it can be easily applied to reduce duct noise in the industry.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074032400777X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A deep-learning-based generative design method is proposed to improve the frequency-dependent characteristics of a reactive silencer, and it has been validated both numerically and experimentally. The noise attenuation performance of the reactive silencer is evaluated with its transmission loss (TL), which varies with frequency and strongly depends on the partition layout inside the reactive silencer. The artificial neural network model for the generative design of the reactive silencer consists of three subnetwork models: the generator, predictor, and converter. The generator model created numerous partition layouts, and their TL curves were estimated using the predictor model. A converter model was developed to identify the frequency-dependent characteristics of the TL curves in a low-dimensional latent space. The latent space was extensively investigated to successfully select the optimal partition layouts satisfying given design requirements, including the target shape of the TL curve and its averaged target TL value. The effectiveness of the proposed method was demonstrated by applying it to three reactive silencer design problems with different design requirements. Among the three optimal silencers, one was physically investigated, and its noise attenuation performance was validated with an acoustic experiment. Because the artificial neural network model of the proposed method was developed for a normalized silencer and requires no prior knowledge of acoustics, it can be easily applied to reduce duct noise in the industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的最佳反应式消音器生成设计
本文提出了一种基于深度学习的生成设计方法,用于改进反应式消音器的频率相关特性,并通过数值和实验进行了验证。反应式消音器的噪声衰减性能通过其传输损耗(TL)进行评估,TL 随频率变化,并与反应式消音器内部的分区布局密切相关。用于反应式消音器生成设计的人工神经网络模型由三个子网络模型组成:生成器、预测器和转换器。生成器模型创建了许多分区布局,并使用预测器模型估算了它们的 TL 曲线。转换器模型的开发是为了在低维潜在空间中识别 TL 曲线的频率相关特性。通过对潜空间的广泛研究,成功地选择了满足给定设计要求的最佳分区布局,包括 TL 曲线的目标形状及其平均目标 TL 值。通过将该方法应用于三个具有不同设计要求的反应式消音器设计问题,证明了该方法的有效性。对三个最佳消音器中的一个进行了物理研究,并通过声学实验验证了其噪声衰减性能。由于所提方法的人工神经网络模型是针对归一化消音器开发的,不需要声学方面的先验知识,因此很容易应用于降低工业管道噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Nonlinear dynamic behavior of a rotor-bearing system considering time-varying misalignment Energy absorption of the kirigami-inspired pyramid foldcore sandwich structures under low-velocity impact Modeling the coupled bubble-arc-droplet evolution in underwater flux-cored arc welding A GAN-based stepwise full-field mechanical prediction model for architected metamaterials Backward motion suppression in space-constrained piezoelectric pipeline robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1