Fusing temporal and semantic dependencies for session-based recommendation

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Processing & Management Pub Date : 2024-09-25 DOI:10.1016/j.ipm.2024.103896
Haoyan Fu, Zhida Qin, Wenhao Xue, Gangyi Ding
{"title":"Fusing temporal and semantic dependencies for session-based recommendation","authors":"Haoyan Fu,&nbsp;Zhida Qin,&nbsp;Wenhao Xue,&nbsp;Gangyi Ding","doi":"10.1016/j.ipm.2024.103896","DOIUrl":null,"url":null,"abstract":"<div><div>Session-based recommendation (SBR) predicts the next item in user sequences. Existing research focuses on item transition patterns, neglecting semantic information dependencies crucial for understanding users’ preferences. Incorporating semantic characteristics is vital for accurate recommendations, especially in applications like user purchase sequences. In this paper, to tackle the above issue, we novelly propose a framework that hierarchically fuses temporal and semantic dependencies. Technically, we present the Item Transition Dependency Module and Semantic Dependency Module based on the whole session set: (i) Item Transition Dependency Module is exclusively to learn the item embeddings through temporal relations and utilizes item transitions from both global and local levels; (ii) Semantic Dependency Module develops mutually independent embeddings of both sessions and items via stable interaction relations. In addition, under the unified organization of the Cross View, semantic information is adaptively incorporated into the temporal dependency learning and used to improve the performance of SBR. Extensive experiments on three large-scale real-world datasets show the superiority of our framework over current state-of-the-art methods. In particular, our model improves its performance over SOTA on all three datasets, with 5.5%, 0.2%, and 3.0% improvements on Recall@20, and 5.8%, 4.6%, and 2.0% improvements on MRR@20, respectively.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002553","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Session-based recommendation (SBR) predicts the next item in user sequences. Existing research focuses on item transition patterns, neglecting semantic information dependencies crucial for understanding users’ preferences. Incorporating semantic characteristics is vital for accurate recommendations, especially in applications like user purchase sequences. In this paper, to tackle the above issue, we novelly propose a framework that hierarchically fuses temporal and semantic dependencies. Technically, we present the Item Transition Dependency Module and Semantic Dependency Module based on the whole session set: (i) Item Transition Dependency Module is exclusively to learn the item embeddings through temporal relations and utilizes item transitions from both global and local levels; (ii) Semantic Dependency Module develops mutually independent embeddings of both sessions and items via stable interaction relations. In addition, under the unified organization of the Cross View, semantic information is adaptively incorporated into the temporal dependency learning and used to improve the performance of SBR. Extensive experiments on three large-scale real-world datasets show the superiority of our framework over current state-of-the-art methods. In particular, our model improves its performance over SOTA on all three datasets, with 5.5%, 0.2%, and 3.0% improvements on Recall@20, and 5.8%, 4.6%, and 2.0% improvements on MRR@20, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合时间和语义依赖性,实现基于会话的推荐
基于会话的推荐(SBR)可预测用户序列中的下一个项目。现有研究侧重于项目转换模式,忽略了对了解用户偏好至关重要的语义信息依赖性。语义特征对于准确推荐至关重要,尤其是在用户购买序列等应用中。在本文中,为了解决上述问题,我们新颖地提出了一个分层融合时间和语义依赖关系的框架。在技术上,我们提出了基于整个会话集的项目转换依赖模块和语义依赖模块:(i) 项目转换依赖模块专门通过时间关系学习项目嵌入,并从全局和局部两个层面利用项目转换;(ii) 语义依赖模块通过稳定的交互关系开发会话和项目相互独立的嵌入。此外,在 "交叉视图 "的统一组织下,语义信息被自适应地纳入时间依赖学习,并用于提高 SBR 的性能。在三个大规模真实数据集上进行的广泛实验表明,我们的框架优于目前最先进的方法。特别是,在所有三个数据集上,我们的模型都比 SOTA 提高了性能,在 Recall@20 上分别提高了 5.5%、0.2% 和 3.0%,在 MRR@20 上分别提高了 5.8%、4.6% 和 2.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
期刊最新文献
ME3A: A Multimodal Entity Entailment framework for multimodal Entity Alignment Hierarchical multi-label text classification of tourism resources using a label-aware dual graph attention network Impact of economic and socio-political risk factors on sovereign credit ratings Higher-order structure based node importance evaluation in directed networks Membership inference attacks via spatial projection-based relative information loss in MLaaS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1