Electrochemical determination of 4-nitrophenol using functionalized graphene oxide/functionalized multi-walled carbon nanotubes hybrid material modified glassy carbon electrode

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2024-09-21 DOI:10.1016/j.chemphys.2024.112468
Pasar Nizar Saeed, Muhammet Guler
{"title":"Electrochemical determination of 4-nitrophenol using functionalized graphene oxide/functionalized multi-walled carbon nanotubes hybrid material modified glassy carbon electrode","authors":"Pasar Nizar Saeed,&nbsp;Muhammet Guler","doi":"10.1016/j.chemphys.2024.112468","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, a novel carboxylated multi-walled carbon nanotubes-carboxylated graphene oxide coated glassy carbon electrode (f-MWCNTs/f-GO/GCE) was prepared for electrochemical determination of 4-nitropehenol (4-NP). The sensor was characterized using fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), raman spectroscopy, and powder x-ray diffraction (XRD). Electrochmical experiments were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry. The resulting f-MWCNTs/f-GO/GCE could be performed for quick, sensitive, and selective determination of 4-NP in the presence of other electroactive compounds. 4-NP was electrochemically detected depending on the reduction of 4-NP at −0.65 V potential using amperometric method. Under the optimum condutions, the sensor showed excellent response to the determination of 4-NP with three linear detection ranges from 0.018 to 700 µM. The sensor exhibited extremely low limit of detection (5.4 nM). Also, the fabricated sensor was used for detection of 4-NP in different water samples.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"588 ","pages":"Article 112468"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002970","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a novel carboxylated multi-walled carbon nanotubes-carboxylated graphene oxide coated glassy carbon electrode (f-MWCNTs/f-GO/GCE) was prepared for electrochemical determination of 4-nitropehenol (4-NP). The sensor was characterized using fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), raman spectroscopy, and powder x-ray diffraction (XRD). Electrochmical experiments were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry. The resulting f-MWCNTs/f-GO/GCE could be performed for quick, sensitive, and selective determination of 4-NP in the presence of other electroactive compounds. 4-NP was electrochemically detected depending on the reduction of 4-NP at −0.65 V potential using amperometric method. Under the optimum condutions, the sensor showed excellent response to the determination of 4-NP with three linear detection ranges from 0.018 to 700 µM. The sensor exhibited extremely low limit of detection (5.4 nM). Also, the fabricated sensor was used for detection of 4-NP in different water samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用功能化氧化石墨烯/功能化多壁碳纳米管杂化材料修饰的玻璃碳电极电化学测定 4-硝基苯酚
本文制备了一种新型羧基多壁碳纳米管-羧基氧化石墨烯涂层玻璃碳电极(f-MWCNTs/f-GO/GCE),用于电化学测定 4-硝基苯酚(4-NP)。使用傅立叶变换红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、拉曼光谱和粉末 X 射线衍射(XRD)对传感器进行了表征。电化学实验采用循环伏安法(CV)、电化学阻抗谱法(EIS)和安培计法进行。所制备的 f-MWCNTs/f-GO/GCE 可用于在存在其他电活性化合物的情况下快速、灵敏、选择性地测定 4-NP。4-NP 的电化学检测取决于 4-NP 在 -0.65 V 电位下的还原,采用的是安培法。在最佳条件下,传感器对 4-NP 的检测显示出极佳的响应,在 0.018 至 700 µM 之间有三个线性检测范围。该传感器的检测限极低(5.4 nM)。此外,该传感器还被用于检测不同水样中的 4-NP 含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
Structural and spectral characterizations of mono-nitrogen doped C70 fullerene by soft X-ray spectroscopy Construction of dual-output molecular logic circuit based on bovine serum albumin loaded with two fluorescent compounds Investigation on the development of Novel PAM structure as high-performance clay inhibitor in HT/HP conditions by using functional groups Modulated electronic properties of borophene nanoribbons using copper and oxygen atoms Ice-grain impact on a rough amorphous silica surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1