Enhanced performance of GO and RGO/Y2SiO5: Sm3+ nanocomposites for supercapacitors and biosensors

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering B-advanced Functional Solid-state Materials Pub Date : 2024-09-25 DOI:10.1016/j.mseb.2024.117726
Nandini Robin Nadar , J. Deepak , S.C. Sharma , B.R. Radha Krushna , Augustine George , Chitathoor Sridhar , Samir Sahu , D. Veera Vanitha , I.S. Pruthviraj , H. Nagabhushana
{"title":"Enhanced performance of GO and RGO/Y2SiO5: Sm3+ nanocomposites for supercapacitors and biosensors","authors":"Nandini Robin Nadar ,&nbsp;J. Deepak ,&nbsp;S.C. Sharma ,&nbsp;B.R. Radha Krushna ,&nbsp;Augustine George ,&nbsp;Chitathoor Sridhar ,&nbsp;Samir Sahu ,&nbsp;D. Veera Vanitha ,&nbsp;I.S. Pruthviraj ,&nbsp;H. Nagabhushana","doi":"10.1016/j.mseb.2024.117726","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for high-performance materials in energy storage and biosensing applications highlights the need for ongoing research. Traditional materials often fail to meet the required standards for specific capacitance, energy density, and selectivity. Developing advanced nanocomposites, such as reduced graphene oxide (RGO) based Y<sub>2</sub>SiO<sub>5</sub>:Sm<sup>3+</sup> (RYSOS), seeks to overcome these limitations, providing enhanced efficiency and stability. This study synthesized RYSOS nanocomposites for supercapacitor and biosensor applications, demonstrating superior performance over graphene oxide (GO) (GYSOS). RYSOS exhibited a higher specific capacitance of 474.81 Fg<sup>−1</sup> compared to 396.68F<sup>−1</sup> for GYSOS, and an energy density of 55.55 Wh/kg versus 32.89 Wh/kg. Additionally, RYSOS electrodes showed improved capacity retention at 87.83 % and coulombic efficiency at 91.54 % after 5000 cycles. In biosensing, RYSOS-modified carbon paste electrodes achieved excellent dopamine detection at pH 7.4, with a limit of detection (LOD) of 0.8579 µM and a limit of quantification (LOQ) of 2.859 µM. The developed electrode also demonstrated high selectivity for dopamine over uric acid and maintained 90 % stability over 10 cycles. These findings underscore the potential of RYSOS nanocomposites in enhancing the performance of advanced energy storage systems and biosensors, highlighting their effectiveness in specific capacitance, energy density, and selective biosensing capabilities.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"310 ","pages":"Article 117726"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724005555","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for high-performance materials in energy storage and biosensing applications highlights the need for ongoing research. Traditional materials often fail to meet the required standards for specific capacitance, energy density, and selectivity. Developing advanced nanocomposites, such as reduced graphene oxide (RGO) based Y2SiO5:Sm3+ (RYSOS), seeks to overcome these limitations, providing enhanced efficiency and stability. This study synthesized RYSOS nanocomposites for supercapacitor and biosensor applications, demonstrating superior performance over graphene oxide (GO) (GYSOS). RYSOS exhibited a higher specific capacitance of 474.81 Fg−1 compared to 396.68F−1 for GYSOS, and an energy density of 55.55 Wh/kg versus 32.89 Wh/kg. Additionally, RYSOS electrodes showed improved capacity retention at 87.83 % and coulombic efficiency at 91.54 % after 5000 cycles. In biosensing, RYSOS-modified carbon paste electrodes achieved excellent dopamine detection at pH 7.4, with a limit of detection (LOD) of 0.8579 µM and a limit of quantification (LOQ) of 2.859 µM. The developed electrode also demonstrated high selectivity for dopamine over uric acid and maintained 90 % stability over 10 cycles. These findings underscore the potential of RYSOS nanocomposites in enhancing the performance of advanced energy storage systems and biosensors, highlighting their effectiveness in specific capacitance, energy density, and selective biosensing capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强 GO 和 RGO/Y2SiO5:Sm3+ 纳米复合材料在超级电容器和生物传感器中的性能
能量存储和生物传感应用对高性能材料的需求日益增长,这凸显了持续研究的必要性。传统材料往往无法满足比电容、能量密度和选择性的要求。开发先进的纳米复合材料,如基于还原氧化石墨烯(RGO)的 Y2SiO5:Sm3+ (RYSOS),旨在克服这些限制,提高效率和稳定性。本研究合成了用于超级电容器和生物传感器应用的 RYSOS 纳米复合材料,其性能优于氧化石墨烯(GO)(GYSOS)。RYSOS 的比电容为 474.81 Fg-1,高于 GYSOS 的 396.68F-1;能量密度为 55.55 Wh/kg,高于 GYSOS 的 32.89 Wh/kg。此外,RYSOS 电极在 5000 次循环后的容量保持率为 87.83%,库仑效率为 91.54%。在生物传感方面,RYSOS 改性碳浆电极在 pH 值为 7.4 的条件下实现了出色的多巴胺检测,检测限 (LOD) 为 0.8579 µM,定量限 (LOQ) 为 2.859 µM。所开发的电极还显示出对多巴胺而非尿酸的高选择性,并在 10 次循环中保持了 90% 的稳定性。这些发现强调了 RYSOS 纳米复合材料在提高先进储能系统和生物传感器性能方面的潜力,突出了其在比电容、能量密度和选择性生物传感能力方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Biocompatible Mn and Cu dual-doped ZnS nanosheets for enhanced the photocatalytic activity under sunlight irradiation for wastewater treatment and embedded with PVA polymer for reusability Study on the mechanism of photocatalytic activity enhancement of Ag/Ag3PO4/PDI-2 supramolecular Z-scheme heterojunction photocatalyst A comparative study on the lamella effect and properties of atomized iron powder and reduced iron powder in Fe-based soft magnetic composites Effect of temperature and capillary number on wettability and contact angle hysteresis of various materials. Modeling taking into account porosity Synthesis and enhanced electrical properties of Ag-doped α-Fe2O3 nanoparticles in PVA films for nanoelectronic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1