{"title":"Changes in redox status in raspberry (Rubus idaeus L.) fruit during ripening","authors":"Tomasz Piechowiak , Patrycja Sowa-Borowiec","doi":"10.1016/j.bcab.2024.103380","DOIUrl":null,"url":null,"abstract":"<div><div>The knowledge of the mechanisms affecting the process of berry fruit ripening is important, not only to correctly determine the appropriate date of harvest, at which the fruit is most palatable and characterized by adequate shelf-life stability, but also, to develop new strategies of regulating the ripening process before harvesting. It is recognized that berry fruit quality and its post-harvest shelf-life depend on the cellular redox homeostasis. We, therefore, decided to conduct a comprehensive analysis of the level of oxidative stress status in the raspberry fruit proper at different stages of fruit ripening, from green to overripe fruit. We assessed both the level of typical oxidative stress markers, i.e. ROS production, expression of antioxidant enzymes, degree of cell damage, as well as the expression of selected proteins involved in the energy, glutathione, and polyphenols metabolism. We found two stage-related peaks of ROS production. The first - in green fruit, which corresponded to the maximum expression of antioxidant enzymes (MnSOD, CAT), PARP-1, as well as proteins related to glutathione biosynthesis (GS, γ-GC), autophagy (ATG-8) and ubiquitination (UBQ-11). The second one, in the overripe fruit, was responsible for the intensification of oxidative modifications of cell components, i.e. lipids, proteins, and DNA, as well as the loss of low molecular-weight antioxidants. The fruit ripening process, in turn, was manifested by a strong increase in the expression of proteins involved in the biosynthesis of polyphenols (PAL, CHS), cellular respiration (ACO-1, Cyt-C-ox, ATPase), ethylene biosynthesis and signaling (SAMs, EIN-2) and increasing amounts of ABA.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124003645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The knowledge of the mechanisms affecting the process of berry fruit ripening is important, not only to correctly determine the appropriate date of harvest, at which the fruit is most palatable and characterized by adequate shelf-life stability, but also, to develop new strategies of regulating the ripening process before harvesting. It is recognized that berry fruit quality and its post-harvest shelf-life depend on the cellular redox homeostasis. We, therefore, decided to conduct a comprehensive analysis of the level of oxidative stress status in the raspberry fruit proper at different stages of fruit ripening, from green to overripe fruit. We assessed both the level of typical oxidative stress markers, i.e. ROS production, expression of antioxidant enzymes, degree of cell damage, as well as the expression of selected proteins involved in the energy, glutathione, and polyphenols metabolism. We found two stage-related peaks of ROS production. The first - in green fruit, which corresponded to the maximum expression of antioxidant enzymes (MnSOD, CAT), PARP-1, as well as proteins related to glutathione biosynthesis (GS, γ-GC), autophagy (ATG-8) and ubiquitination (UBQ-11). The second one, in the overripe fruit, was responsible for the intensification of oxidative modifications of cell components, i.e. lipids, proteins, and DNA, as well as the loss of low molecular-weight antioxidants. The fruit ripening process, in turn, was manifested by a strong increase in the expression of proteins involved in the biosynthesis of polyphenols (PAL, CHS), cellular respiration (ACO-1, Cyt-C-ox, ATPase), ethylene biosynthesis and signaling (SAMs, EIN-2) and increasing amounts of ABA.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.