Alvie Loufouma-Mbouaka , Attila Andor , David Leitsch , Jorge Pérez-Serrano , Elias S.J. Arnér , Julia Walochnik , Tania Martín-Pérez
{"title":"Evaluating the amoeba thioredoxin reductase selenoprotein as potential drug target for treatment of Acanthamoeba infections","authors":"Alvie Loufouma-Mbouaka , Attila Andor , David Leitsch , Jorge Pérez-Serrano , Elias S.J. Arnér , Julia Walochnik , Tania Martín-Pérez","doi":"10.1016/j.ijpddr.2024.100564","DOIUrl":null,"url":null,"abstract":"<div><div>The genus <em>Acanthamoeba</em> comprises facultative pathogens, causing <em>Acanthamoeba</em> keratitis (AK) and granulomatous amoebic encephalitis (GAE). In both diseases, treatment options are limited, and drug development is challenging. This study aimed to investigate the role of the large thioredoxin reductase selenoprotein of <em>Acanthamoeba</em> (AcTrxR-L) as a potential drug target assessing the effects of the thioredoxin reductase inhibitors auranofin, TRi-1, and TRi-2 on AcTrxR-L activity and on the viability of <em>Acanthamoeba</em> trophozoites. Recombinant expression and purification of AcTrxR-L as a selenoprotein allowed assessments of its enzymatic activity, with reduction of various substrates, including different thioredoxin isoforms. Auranofin demonstrated potent inhibition towards AcTrxR-L, followed by TRi-1, and TRi-2 exhibiting lower effectiveness. The inhibitors showed variable activity against trophozoites in culture, with TRi-1 and TRi-2 resulting in strongly impaired trophozoite viability. Cytotoxicity tests with human corneal epithelial cells revealed lower susceptibility to all compounds compared to <em>Acanthamoeba</em> trophozoites, underscoring their potential as future amoebicidal agents. Altogether, this study highlights the druggability of AcTrxR-L and suggests it to be a promising drug target for the treatment of <em>Acanthamoeba</em> infections. Further research is warranted to elucidate the role of AcTrxR-L in <em>Acanthamoeba</em> pathogenesis and to develop effective therapeutic strategies targeting this redox enzyme.</div></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"26 ","pages":"Article 100564"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320724000459","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The genus Acanthamoeba comprises facultative pathogens, causing Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). In both diseases, treatment options are limited, and drug development is challenging. This study aimed to investigate the role of the large thioredoxin reductase selenoprotein of Acanthamoeba (AcTrxR-L) as a potential drug target assessing the effects of the thioredoxin reductase inhibitors auranofin, TRi-1, and TRi-2 on AcTrxR-L activity and on the viability of Acanthamoeba trophozoites. Recombinant expression and purification of AcTrxR-L as a selenoprotein allowed assessments of its enzymatic activity, with reduction of various substrates, including different thioredoxin isoforms. Auranofin demonstrated potent inhibition towards AcTrxR-L, followed by TRi-1, and TRi-2 exhibiting lower effectiveness. The inhibitors showed variable activity against trophozoites in culture, with TRi-1 and TRi-2 resulting in strongly impaired trophozoite viability. Cytotoxicity tests with human corneal epithelial cells revealed lower susceptibility to all compounds compared to Acanthamoeba trophozoites, underscoring their potential as future amoebicidal agents. Altogether, this study highlights the druggability of AcTrxR-L and suggests it to be a promising drug target for the treatment of Acanthamoeba infections. Further research is warranted to elucidate the role of AcTrxR-L in Acanthamoeba pathogenesis and to develop effective therapeutic strategies targeting this redox enzyme.
期刊介绍:
The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.