{"title":"Detecting interest flooding attacks in NDN: A probability-based event-driven approach","authors":"Matta Krishna Kumari, Nikhil Tripathi","doi":"10.1016/j.cose.2024.104124","DOIUrl":null,"url":null,"abstract":"<div><div>The foundational concepts of the Internet were developed in the 1960s and 1970s with the goal of interconnecting hosts using the TCP/IP architecture. While this architecture has significantly impacted communication and commerce, it struggles to accommodate the Internet’s vast user base and diverse applications. Named Data Network (NDN), a next-generation Internet architecture is designed to overcome the current TCP/IP based Internet architecture’s limitations. NDN’s basic operations make it resilient against several traditional DoS/DDoS attacks. However, NDN remains vulnerable to Interest Flooding Attack (IFA), a class of DoS attacks that can exhaust the routers’ as well as the producers’ resources to disrupt network functionality. To detect these attacks, researchers came up with a few approaches. However, existing detection techniques focus on specific IFA variants but struggle to detect other variants. To address this challenge, in this paper, we propose a statistical abnormality detection scheme to identify all variants of IFA. Additionally, we generate a comprehensive NDN traffic dataset through our experiments and use it to evaluate the performance of the detection scheme. The experimental results show that our scheme can detect all variants of IFA with high accuracy. Towards the end, we also present a sensitivity analysis study that shows the impact of varying a few parameters on the detection performance of the proposed scheme.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104124"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004292","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The foundational concepts of the Internet were developed in the 1960s and 1970s with the goal of interconnecting hosts using the TCP/IP architecture. While this architecture has significantly impacted communication and commerce, it struggles to accommodate the Internet’s vast user base and diverse applications. Named Data Network (NDN), a next-generation Internet architecture is designed to overcome the current TCP/IP based Internet architecture’s limitations. NDN’s basic operations make it resilient against several traditional DoS/DDoS attacks. However, NDN remains vulnerable to Interest Flooding Attack (IFA), a class of DoS attacks that can exhaust the routers’ as well as the producers’ resources to disrupt network functionality. To detect these attacks, researchers came up with a few approaches. However, existing detection techniques focus on specific IFA variants but struggle to detect other variants. To address this challenge, in this paper, we propose a statistical abnormality detection scheme to identify all variants of IFA. Additionally, we generate a comprehensive NDN traffic dataset through our experiments and use it to evaluate the performance of the detection scheme. The experimental results show that our scheme can detect all variants of IFA with high accuracy. Towards the end, we also present a sensitivity analysis study that shows the impact of varying a few parameters on the detection performance of the proposed scheme.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.