William J. Ripple , Danielle N. Whalen , Christopher Wolf , Yuanchun Cao , Jessica Schulte , Sarah Swann , Samuel T. Woodrich , Thomas Newsome , Rhys Cairncross , Aaron J. Wirsing
{"title":"Trophic cascades and climate change","authors":"William J. Ripple , Danielle N. Whalen , Christopher Wolf , Yuanchun Cao , Jessica Schulte , Sarah Swann , Samuel T. Woodrich , Thomas Newsome , Rhys Cairncross , Aaron J. Wirsing","doi":"10.1016/j.fooweb.2024.e00362","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread loss of top predators and anthropogenic climate change are two major environmental crises with pervasive impacts on ecosystems. Climate-related factors such as temperature changes, altered precipitation patterns, increased frequency of extreme weather events, and shifting wildfire regimes can influence trophic cascades by affecting the composition, physiology, and behavior of species within an ecosystem. These changes can disrupt food web dynamics, leading to shifts in predator-prey relationships, altered species interactions, and potentially unexpected ecological outcomes. With these potential disruptions in mind, we analyzed climate risks to 360 extant large carnivore species. Our results show that 47 of these species are threatened by climate change. We then considered how trophic cascades and climate change are linked, describing mechanisms through which harnessing trophic cascades can facilitate efforts to improve climate resilience and, conversely, how climate change can trigger or affect the strength and direction of trophic cascades. As major drivers of global change, more efforts are needed by people and governments to address climate change and trophic downgrading together, with a focus on co-benefits, including improved ecosystem function and carbon sequestration.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352249624000284","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread loss of top predators and anthropogenic climate change are two major environmental crises with pervasive impacts on ecosystems. Climate-related factors such as temperature changes, altered precipitation patterns, increased frequency of extreme weather events, and shifting wildfire regimes can influence trophic cascades by affecting the composition, physiology, and behavior of species within an ecosystem. These changes can disrupt food web dynamics, leading to shifts in predator-prey relationships, altered species interactions, and potentially unexpected ecological outcomes. With these potential disruptions in mind, we analyzed climate risks to 360 extant large carnivore species. Our results show that 47 of these species are threatened by climate change. We then considered how trophic cascades and climate change are linked, describing mechanisms through which harnessing trophic cascades can facilitate efforts to improve climate resilience and, conversely, how climate change can trigger or affect the strength and direction of trophic cascades. As major drivers of global change, more efforts are needed by people and governments to address climate change and trophic downgrading together, with a focus on co-benefits, including improved ecosystem function and carbon sequestration.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.