X-ray induced synthesis of beta tin (β-Sn)

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-09-21 DOI:10.1016/j.jpcs.2024.112351
{"title":"X-ray induced synthesis of beta tin (β-Sn)","authors":"","doi":"10.1016/j.jpcs.2024.112351","DOIUrl":null,"url":null,"abstract":"<div><div>The destabilization of molecular structures via hard X-rays has been previously utilized to synthesize novel compounds. Here we report that the monochromatic X-ray induced decomposition of tin(II) oxalate (SnC<sub>2</sub>O<sub>4</sub>) at ambient and 0.6 GPa pressures lead to the formation of beta tin (β-Sn). At 1 GPa, only the degradation of SnC<sub>2</sub>O<sub>4</sub> crystal structure is observed without any indication of β-Sn at the end of irradiation. The maximum transformation yield is achieved at 0.6 GPa suggesting the critical role of intermolecular distance in X-ray induced synthesis of β-Sn. Moreover, a modified Avrami equation is utilized to describe the kinetics and geometry of structural synthesis at ambient and 0.6 GPa. The obtained results demonstrate that X-ray irradiation can induce photochemical synthetic pathways different from conventional methods (e.g., high pressure, temperature, stoichiometric mixing) and that high pressure (HP) can be considered a tool to control X-ray induced photochemistry.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724004864","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The destabilization of molecular structures via hard X-rays has been previously utilized to synthesize novel compounds. Here we report that the monochromatic X-ray induced decomposition of tin(II) oxalate (SnC2O4) at ambient and 0.6 GPa pressures lead to the formation of beta tin (β-Sn). At 1 GPa, only the degradation of SnC2O4 crystal structure is observed without any indication of β-Sn at the end of irradiation. The maximum transformation yield is achieved at 0.6 GPa suggesting the critical role of intermolecular distance in X-ray induced synthesis of β-Sn. Moreover, a modified Avrami equation is utilized to describe the kinetics and geometry of structural synthesis at ambient and 0.6 GPa. The obtained results demonstrate that X-ray irradiation can induce photochemical synthetic pathways different from conventional methods (e.g., high pressure, temperature, stoichiometric mixing) and that high pressure (HP) can be considered a tool to control X-ray induced photochemistry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
X 射线诱导合成β锡(β-Sn)
以前曾利用硬 X 射线破坏分子结构的稳定性来合成新型化合物。在这里,我们报告了在环境压力和 0.6 GPa 压力下,单色 X 射线诱导草酸锡(II)(SnC2O4)分解导致形成β锡(β-Sn)。在 1 GPa 的压力下,只观察到 SnC2O4 晶体结构的退化,而在辐照结束时没有任何 β-Sn 的迹象。在 0.6 GPa 时实现了最大转化率,这表明分子间距离在 X 射线诱导合成 β-Sn 的过程中起着关键作用。此外,还利用修正的阿夫拉米方程描述了在环境和 0.6 GPa 下结构合成的动力学和几何形状。研究结果表明,X 射线辐照可诱导不同于传统方法(如高压、温度、化学计量混合)的光化学合成途径,高压(HP)可被视为控制 X 射线诱导光化学的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Improving cycling performance and high rate capability of LiNi0.5Mn0.3Co0.2O2 cathode materials by sol-gel combustion synthesis X-ray induced synthesis of beta tin (β-Sn) Quantum nuclear motion in silicene: Assessing structural and vibrational properties through path-integral simulations Catalytic conversion of acetone and n-butanol over metal incorporated hydrotalcite-derived oxides catalysts Tunability in electronic and optical properties of GaS/PbS vdW heterostructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1