PSF-lncRNA interaction as a target for novel targeted anticancer therapies

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomedicine & Pharmacotherapy Pub Date : 2024-09-26 DOI:10.1016/j.biopha.2024.117491
{"title":"PSF-lncRNA interaction as a target for novel targeted anticancer therapies","authors":"","doi":"10.1016/j.biopha.2024.117491","DOIUrl":null,"url":null,"abstract":"<div><div>The Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF), a component of the Drosophila Behavior/Human Splicing (DBHS) complex, plays a pivotal role in cancer pathogenesis. The epigenetic regulation mediated by PSF and long noncoding RNA (lncRNA), along with PSF's alternative splicing activity, has been implicated in promoting cancer cell proliferation, migration, invasion, metastasis, and drug resistance in various human cancers. Recent research highlights the therapeutic promise of targeting the PSF-lncRNA interaction to combat aggressive malignancies, making it a compelling target for cancer therapy. This review offers a detailed synthesis of the current understanding of PSF's role in oncogenic pathways and recent progress in identifying inhibitors of PSF-lncRNA interactions. Furthermore, it discusses the potential of using these inhibitors in cancer treatment strategies, especially as adjuncts to immune checkpoint blockade therapies to improve the efficacy of anti-PD-(L)1 treatments in Glioblastoma Multiforme (GBM). By outlining the interaction patterns of existing PSF-lncRNA inhibitors, this article aims to guide the development and refinement of future pharmacological interventions.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332224013775","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF), a component of the Drosophila Behavior/Human Splicing (DBHS) complex, plays a pivotal role in cancer pathogenesis. The epigenetic regulation mediated by PSF and long noncoding RNA (lncRNA), along with PSF's alternative splicing activity, has been implicated in promoting cancer cell proliferation, migration, invasion, metastasis, and drug resistance in various human cancers. Recent research highlights the therapeutic promise of targeting the PSF-lncRNA interaction to combat aggressive malignancies, making it a compelling target for cancer therapy. This review offers a detailed synthesis of the current understanding of PSF's role in oncogenic pathways and recent progress in identifying inhibitors of PSF-lncRNA interactions. Furthermore, it discusses the potential of using these inhibitors in cancer treatment strategies, especially as adjuncts to immune checkpoint blockade therapies to improve the efficacy of anti-PD-(L)1 treatments in Glioblastoma Multiforme (GBM). By outlining the interaction patterns of existing PSF-lncRNA inhibitors, this article aims to guide the development and refinement of future pharmacological interventions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSF-lncRNA 相互作用是新型靶向抗癌疗法的目标
多嘧啶簇结合蛋白相关剪接因子(PSF)是果蝇行为/人类剪接(DBHS)复合体的一个组成部分,在癌症发病机制中起着关键作用。PSF 和长非编码 RNA(lncRNA)介导的表观遗传调控,以及 PSF 的替代剪接活性,已被证实与促进各种人类癌症的癌细胞增殖、迁移、侵袭、转移和耐药性有关。最近的研究强调了针对 PSF-lncRNA 相互作用的治疗前景,以对抗侵袭性恶性肿瘤,使其成为癌症治疗的一个引人注目的靶点。本综述详细综述了目前对 PSF 在致癌通路中作用的理解,以及在确定 PSF-lncRNA 相互作用抑制剂方面的最新进展。此外,它还讨论了在癌症治疗策略中使用这些抑制剂的潜力,尤其是将其作为免疫检查点阻断疗法的辅助手段,以提高多形性胶质母细胞瘤(GBM)中抗-PD-(L)1疗法的疗效。本文概述了现有 PSF-lncRNA 抑制剂的相互作用模式,旨在指导未来药物干预措施的开发和完善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
期刊最新文献
Molecular mechanism through which Tripterygium hypoglaucum (Lévl.) Hutch alleviates psoriasis ZenoSWATH DIA proteomics and clustering analysis of the effect of cysteamine at the cellular level in cystinotic fibroblasts Protective mechanism of Prim-O-glucosylcimifugin in the treatment of osteoarthritis: Based on lncRNA XIST regulation of Nav1.7 Mitochondria in skeletal system-related diseases Accelerated remyelination and immune modulation by the EBI2 agonist 7α,25-dihydroxycholesterol analogue in the cuprizone model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1