{"title":"Machine learning solutions for mobile internet of things security: A literature review and research agenda","authors":"Hadjer Messabih, Chaker Abdelaziz Kerrache, Youssra Cheriguene, Marica Amadeo, Farhan Ahmad","doi":"10.1002/ett.5041","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the advancements in wireless technologies and sensor networks have promoted the Mobile Internet of Things (MIoT) paradigm. However, the unique characteristics of MIoT networks expose them to significant security vulnerabilities and threats, necessitating robust cybersecurity measures, including effective attack detection and mitigation techniques. Among these strategies, Artificial Intelligence (AI), and particularly Machine Learning- (ML) based approaches, emerge as a pivotal method for bolstering MIoT security. In this paper, we present a comprehensive literature survey regarding the utilization of ML for enhancing security in MIoT. Through an exhaustive review of existing research articles, we analyze the diverse array of ML-based approaches employed to safeguard MIoT ecosystems and provide a holistic understanding of the current landscape, elucidating the strengths and limitations of prevailing methodologies. We propose a structured taxonomy to categorize recent works in this domain, by distinguishing approaches based on Shallow Supervised Learning (SSL), Shallow Unsupervised Learning (SUL), Deep Learning (DL), and Reinforcement Learning (RL). By delineating existing challenges and potential future directions for cybersecurity in MIoT, we aim to stimulate discourse and inspire novel approaches towards more resilient and secure MIoT ecosystems.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 10","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.5041","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the advancements in wireless technologies and sensor networks have promoted the Mobile Internet of Things (MIoT) paradigm. However, the unique characteristics of MIoT networks expose them to significant security vulnerabilities and threats, necessitating robust cybersecurity measures, including effective attack detection and mitigation techniques. Among these strategies, Artificial Intelligence (AI), and particularly Machine Learning- (ML) based approaches, emerge as a pivotal method for bolstering MIoT security. In this paper, we present a comprehensive literature survey regarding the utilization of ML for enhancing security in MIoT. Through an exhaustive review of existing research articles, we analyze the diverse array of ML-based approaches employed to safeguard MIoT ecosystems and provide a holistic understanding of the current landscape, elucidating the strengths and limitations of prevailing methodologies. We propose a structured taxonomy to categorize recent works in this domain, by distinguishing approaches based on Shallow Supervised Learning (SSL), Shallow Unsupervised Learning (SUL), Deep Learning (DL), and Reinforcement Learning (RL). By delineating existing challenges and potential future directions for cybersecurity in MIoT, we aim to stimulate discourse and inspire novel approaches towards more resilient and secure MIoT ecosystems.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications