Per Thunberg , Gunilla Wastensson , Göran Lidén , Mary Adjeiwaah , Jens Tellman , Bernt Bergström , Louise Fornander , Peter Lundberg
{"title":"Welding techniques and manganese concentrations in blood and brain: Results from the WELDFUMES study","authors":"Per Thunberg , Gunilla Wastensson , Göran Lidén , Mary Adjeiwaah , Jens Tellman , Bernt Bergström , Louise Fornander , Peter Lundberg","doi":"10.1016/j.neuro.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>This study used whole-brain mapping to investigate the effect of different welding processes on manganese (Mn) accumulation in the brain. Exposure measurements were performed at the welders’ workplaces about 3 weeks before a magnetic resonance imaging (MRI) examination. The welders were categorized into three main groups based on welding method, and the T1-relaxation rate (R1) was measured using quantitative MRI (qMRI). Welders using shielded metal arc welding (SMAW) were found to have lower accumulations of total Mn in clusters encompassing white matter, thalamus, putamen, pallidum, and substantia nigra compared with welders using inert gas tungsten arc welding (GTAW) or continuous consumable electrode arc welding (CCEAW). A positive correlation was found between Mn in red blood cells (Mn-RBC) and R1 in a region encompassing pre-and post-central gyri. The results of this study show that the accumulation of free, bound, or compartmentalized Mn ions in the brain differed depending on the welding method used. These differences were predominately located in the basal ganglia but were also found in regions encompassing white matter. The level of Mn-RBC was correlated to the deposition of Mn in the left primary somatosensory and motor cortex and may therefore be linked to neurological and neurobehavioral symptoms.</div></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X24001189","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study used whole-brain mapping to investigate the effect of different welding processes on manganese (Mn) accumulation in the brain. Exposure measurements were performed at the welders’ workplaces about 3 weeks before a magnetic resonance imaging (MRI) examination. The welders were categorized into three main groups based on welding method, and the T1-relaxation rate (R1) was measured using quantitative MRI (qMRI). Welders using shielded metal arc welding (SMAW) were found to have lower accumulations of total Mn in clusters encompassing white matter, thalamus, putamen, pallidum, and substantia nigra compared with welders using inert gas tungsten arc welding (GTAW) or continuous consumable electrode arc welding (CCEAW). A positive correlation was found between Mn in red blood cells (Mn-RBC) and R1 in a region encompassing pre-and post-central gyri. The results of this study show that the accumulation of free, bound, or compartmentalized Mn ions in the brain differed depending on the welding method used. These differences were predominately located in the basal ganglia but were also found in regions encompassing white matter. The level of Mn-RBC was correlated to the deposition of Mn in the left primary somatosensory and motor cortex and may therefore be linked to neurological and neurobehavioral symptoms.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.