A novel meshless numerical simulation of oil-water two-phase flow with gravity and capillary forces in three-dimensional porous media

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Analysis with Boundary Elements Pub Date : 2024-09-26 DOI:10.1016/j.enganabound.2024.105975
Wentao Zhan , Hui Zhao , Yuyang Liu , Zhijie Wei , Xiang Rao
{"title":"A novel meshless numerical simulation of oil-water two-phase flow with gravity and capillary forces in three-dimensional porous media","authors":"Wentao Zhan ,&nbsp;Hui Zhao ,&nbsp;Yuyang Liu ,&nbsp;Zhijie Wei ,&nbsp;Xiang Rao","doi":"10.1016/j.enganabound.2024.105975","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel fully implicit scheme for simulating three-dimensional (3D) oil-water two-phase flow with gravity and capillary forces using the meshless generalized finite difference method (GFDM). The approach combines an implicit Eulerian scheme in time with a GFDM discretization method in space to compute implicit solutions for the pressure and saturation in the flow control equations. The research introduces an <em>L</em><sup>2</sup> norm error formula and conducts a sensitivity analysis on the impact of varying influence domain radii on computational accuracy within the Cartesian node collocation scheme. Findings suggest that larger influence domain radii correspond to reduced computational accuracy, providing a preliminary guideline for selecting the domain radius in 3D GFDM applications. Overall, this paper presents an effective and precise meshless method for addressing two-phase flow challenges in 3D porous media, highlighting the promising prospects of GFDM in numerical simulations.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 105975"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095579972400448X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel fully implicit scheme for simulating three-dimensional (3D) oil-water two-phase flow with gravity and capillary forces using the meshless generalized finite difference method (GFDM). The approach combines an implicit Eulerian scheme in time with a GFDM discretization method in space to compute implicit solutions for the pressure and saturation in the flow control equations. The research introduces an L2 norm error formula and conducts a sensitivity analysis on the impact of varying influence domain radii on computational accuracy within the Cartesian node collocation scheme. Findings suggest that larger influence domain radii correspond to reduced computational accuracy, providing a preliminary guideline for selecting the domain radius in 3D GFDM applications. Overall, this paper presents an effective and precise meshless method for addressing two-phase flow challenges in 3D porous media, highlighting the promising prospects of GFDM in numerical simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维多孔介质中带有重力和毛细力的油水两相流的新型无网格数值模拟
本文提出了一种新颖的全隐式方案,利用无网格广义有限差分法(GFDM)模拟具有重力和毛细力的三维(3D)油水两相流。该方法结合了时间上的隐式欧拉方案和空间上的 GFDM 离散方法,以计算流量控制方程中压力和饱和度的隐式解。研究引入了 L2 准则误差公式,并对笛卡尔节点配置方案中不同影响域半径对计算精度的影响进行了敏感性分析。研究结果表明,影响域半径越大,计算精度越低,这为在三维 GFDM 应用中选择影响域半径提供了初步指导。总之,本文提出了一种有效而精确的无网格方法来解决三维多孔介质中的两相流难题,凸显了 GFDM 在数值模拟中的广阔前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
期刊最新文献
Special inclusion elements for thermal analysis of composite materials Optimally shaped nanotubes for field concentration Fluid topology optimization using quadtree-based scaled boundary finite element method Efficient exact quadrature of regular solid harmonics times polynomials over simplices in R3 Modified space-time radial basis function collocation method for solving three-dimensional transient elastodynamic problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1