Hans Fernández-Navarro , Juan-Luis García , Samuel U. Nussbaumer , Dmitry Tikhomirov , Francia Pérez , Isabelle Gärtner-Roer , Marcus Christl , Markus Egli
{"title":"10Be chronology of the Last Glacial Maximum and Termination in the Andes of central Chile: The record of the Universidad Glacier (34° S)","authors":"Hans Fernández-Navarro , Juan-Luis García , Samuel U. Nussbaumer , Dmitry Tikhomirov , Francia Pérez , Isabelle Gärtner-Roer , Marcus Christl , Markus Egli","doi":"10.1016/j.quascirev.2024.108968","DOIUrl":null,"url":null,"abstract":"<div><div>Reconstructing mid-latitude glacier variations is a prerequisite for unveiling the interhemispheric climate linkages and atmospheric-ocean forcings that triggered those changes during the last glacial cycle. Nonetheless, the timing, magnitude, and structure of glacier fluctuations in the southern mid-latitudes remain incomplete. Here, we present a new <sup>10</sup>Be chronology of the Universidad Glacier in the Andes of central Chile (34° S, 70° W; ∼2500 m a.s.l.) based on 21 cosmogenic-exposure ages of boulders on discrete moraine ridges defining former ice margins. Our findings include the mapping and dating of three moraines, UNI I, UNI II, and UNI III, located ∼20 km, 15 km, and 10 km down-valley from the present-day glacier front, respectively. The <sup>10</sup>Be exposure ages of the UNI I moraine range from 135.9 ± 7.1 to 51.4 ± 2.7 ka (n = 3). The UNI II moraine gave a mean age of 18.0 ± 0.9 (n = 15) and the UNI III moraine yielded a mean age of 13.9 ± 0.8 ka (n = 3). The UNI I moraine implies the largest ice extent during a pre-Last Glacial Maximum (pre-LGM) period, including the penultimate glaciation. The UNI II is a moraine complex that represents cold and humid conditions in central Chile at the end of the LGM, which we attribute to the northward-shift of the Southern Westerly Winds (SWW). The UNI III moraine represents a return to glacial conditions interrupting the Termination, evidencing both a double-step deglacial trend observed through the southern middle and high latitudes at the end of the last ice age. The Andes at this subtropical latitude record a global signal of glacial and climate change.</div></div>","PeriodicalId":20926,"journal":{"name":"Quaternary Science Reviews","volume":"344 ","pages":"Article 108968"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277379124004694","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reconstructing mid-latitude glacier variations is a prerequisite for unveiling the interhemispheric climate linkages and atmospheric-ocean forcings that triggered those changes during the last glacial cycle. Nonetheless, the timing, magnitude, and structure of glacier fluctuations in the southern mid-latitudes remain incomplete. Here, we present a new 10Be chronology of the Universidad Glacier in the Andes of central Chile (34° S, 70° W; ∼2500 m a.s.l.) based on 21 cosmogenic-exposure ages of boulders on discrete moraine ridges defining former ice margins. Our findings include the mapping and dating of three moraines, UNI I, UNI II, and UNI III, located ∼20 km, 15 km, and 10 km down-valley from the present-day glacier front, respectively. The 10Be exposure ages of the UNI I moraine range from 135.9 ± 7.1 to 51.4 ± 2.7 ka (n = 3). The UNI II moraine gave a mean age of 18.0 ± 0.9 (n = 15) and the UNI III moraine yielded a mean age of 13.9 ± 0.8 ka (n = 3). The UNI I moraine implies the largest ice extent during a pre-Last Glacial Maximum (pre-LGM) period, including the penultimate glaciation. The UNI II is a moraine complex that represents cold and humid conditions in central Chile at the end of the LGM, which we attribute to the northward-shift of the Southern Westerly Winds (SWW). The UNI III moraine represents a return to glacial conditions interrupting the Termination, evidencing both a double-step deglacial trend observed through the southern middle and high latitudes at the end of the last ice age. The Andes at this subtropical latitude record a global signal of glacial and climate change.
期刊介绍:
Quaternary Science Reviews caters for all aspects of Quaternary science, and includes, for example, geology, geomorphology, geography, archaeology, soil science, palaeobotany, palaeontology, palaeoclimatology and the full range of applicable dating methods. The dividing line between what constitutes the review paper and one which contains new original data is not easy to establish, so QSR also publishes papers with new data especially if these perform a review function. All the Quaternary sciences are changing rapidly and subject to re-evaluation as the pace of discovery quickens; thus the diverse but comprehensive role of Quaternary Science Reviews keeps readers abreast of the wider issues relating to new developments in the field.