Dynamics of sit-to-stand and stand-to-sit motions based on the trajectory control of the centre of mass of the body: A bond graph approach

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-09-27 DOI:10.1016/j.compbiomed.2024.109117
{"title":"Dynamics of sit-to-stand and stand-to-sit motions based on the trajectory control of the centre of mass of the body: A bond graph approach","authors":"","doi":"10.1016/j.compbiomed.2024.109117","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a bond graph model for the dynamics of sit-to-stand (SiTSt) and stand-to-sit (StTSi) motions. It is hypothesized that, for these motions, the central nervous system (CNS) controls the trajectory of the centre of mass of the body (COMB). The model comprises two identical submodels: one submodel emulates the working of the CNS, and the other represents the human body. Reference trajectories of the COMB determined through experimentation are input to the submodel representing the working of CNS, which automatically determines the required joint angle trajectories. Based on the required and actual joint angle trajectories, proportional integral derivative controllers at the joints (j-PID) provide the required joint torques to actuate the human body submodel. Simulation results show that during SiTSt or StTSi motions, the centre of mass of the human body submodel follows the commanded trajectories. The joint angle trajectories from the submodel representing the working of CNS closely follow the respective experimental joint angle trajectories. Also, for each motion, joint angles, torques and powers are presented, which agree with earlier studies. These findings provide adequate confidence in proposed hypothesis and indicate the potential of developed model for other biomechanical investigations of SiTSt and StTSi motions.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524012022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a bond graph model for the dynamics of sit-to-stand (SiTSt) and stand-to-sit (StTSi) motions. It is hypothesized that, for these motions, the central nervous system (CNS) controls the trajectory of the centre of mass of the body (COMB). The model comprises two identical submodels: one submodel emulates the working of the CNS, and the other represents the human body. Reference trajectories of the COMB determined through experimentation are input to the submodel representing the working of CNS, which automatically determines the required joint angle trajectories. Based on the required and actual joint angle trajectories, proportional integral derivative controllers at the joints (j-PID) provide the required joint torques to actuate the human body submodel. Simulation results show that during SiTSt or StTSi motions, the centre of mass of the human body submodel follows the commanded trajectories. The joint angle trajectories from the submodel representing the working of CNS closely follow the respective experimental joint angle trajectories. Also, for each motion, joint angles, torques and powers are presented, which agree with earlier studies. These findings provide adequate confidence in proposed hypothesis and indicate the potential of developed model for other biomechanical investigations of SiTSt and StTSi motions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于身体质心轨迹控制的从坐到站和从站到坐运动的动力学:键图方法
本文提出了一个从坐到站(SiTSt)和从站到坐(StTSi)运动动态的键图模型。假设在这些运动中,中枢神经系统(CNS)控制着身体质量中心(COMB)的运动轨迹。该模型由两个相同的子模型组成:一个子模型模拟中枢神经系统的工作,另一个子模型模拟人体。通过实验确定的 COMB 参考轨迹被输入到代表中枢神经系统工作的子模型中,该子模型会自动确定所需的关节角度轨迹。根据所需的和实际的关节角度轨迹,关节处的比例积分导数控制器(j-PID)提供所需的关节扭矩,以驱动人体子模型。仿真结果表明,在 SiTSt 或 StTSi 运动过程中,人体子模型的质心遵循指令轨迹。代表中枢神经系统工作的子模型的关节角度轨迹与相应的实验关节角度轨迹非常接近。此外,每个运动的关节角度、扭矩和功率也与之前的研究结果一致。这些研究结果为提出的假设提供了足够的信心,并表明所开发的模型在 SiTSt 和 StTSi 运动的其他生物力学研究中具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Lightweight medical image segmentation network with multi-scale feature-guided fusion. Shuffled ECA-Net for stress detection from multimodal wearable sensor data. Stacking based ensemble learning framework for identification of nitrotyrosine sites. Two-stage deep learning framework for occlusal crown depth image generation. A joint analysis proposal of nonlinear longitudinal and time-to-event right-, interval-censored data for modeling pregnancy miscarriage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1