A Python toolkit for integrating geographic information system into regulatory dispersion models for refined pollution modeling

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-09-18 DOI:10.1016/j.envsoft.2024.106219
Haobing Liu , Pengfei Gao , Sheng Xiang , Hong Zhu , Jia Chen , Qingyan Fu
{"title":"A Python toolkit for integrating geographic information system into regulatory dispersion models for refined pollution modeling","authors":"Haobing Liu ,&nbsp;Pengfei Gao ,&nbsp;Sheng Xiang ,&nbsp;Hong Zhu ,&nbsp;Jia Chen ,&nbsp;Qingyan Fu","doi":"10.1016/j.envsoft.2024.106219","DOIUrl":null,"url":null,"abstract":"<div><div>AERMOD is designated as U.S. Environmental Protection Agency (EPA)'s preferred air dispersion model for refined transportation project hot-spot analyses beginning in 2020. One of the key challenges in its modeling process is spatially encoding roadway geometry, especially when simulating highways with complex geometric designs. This research proposed an open-source Python package, <em>GTA</em>, which enables conversion of publicly available roadway Geographic Information System (GIS) layers into defined sources, and source-based emission rates from MOtor Vehicle Emissions Simulator (MOVES) output for AERMOD modeling. The research selected a suburban area in Atlanta, and conducted a comprehensive analysis in terms of annual PM<sub>2.5</sub> concentration results and the speed of preparing AERMOD input files for highway network modeling both manually and using software developed based on the proposed methodology. The results prove that the proposed methodology significantly expedites the AERMOD input preparation process, and facilitates convenient testing of multiple modeling configurations for multi-scenario or sensitivity analysis.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106219"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002809","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

AERMOD is designated as U.S. Environmental Protection Agency (EPA)'s preferred air dispersion model for refined transportation project hot-spot analyses beginning in 2020. One of the key challenges in its modeling process is spatially encoding roadway geometry, especially when simulating highways with complex geometric designs. This research proposed an open-source Python package, GTA, which enables conversion of publicly available roadway Geographic Information System (GIS) layers into defined sources, and source-based emission rates from MOtor Vehicle Emissions Simulator (MOVES) output for AERMOD modeling. The research selected a suburban area in Atlanta, and conducted a comprehensive analysis in terms of annual PM2.5 concentration results and the speed of preparing AERMOD input files for highway network modeling both manually and using software developed based on the proposed methodology. The results prove that the proposed methodology significantly expedites the AERMOD input preparation process, and facilitates convenient testing of multiple modeling configurations for multi-scenario or sensitivity analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将地理信息系统整合到监管分散模型中的 Python 工具包,用于精细化污染建模
AERMOD 被指定为美国环境保护署(EPA)的首选空气扩散模型,用于从 2020 年开始的交通项目热点分析。其建模过程中的关键挑战之一是对道路几何形状进行空间编码,尤其是在模拟具有复杂几何设计的高速公路时。这项研究提出了一个开源 Python 软件包 GTA,它可以将公开可用的道路地理信息系统(GIS)图层转换为定义的排放源,并将 MOtor 车辆排放模拟器(MOVES)输出的基于排放源的排放率转换为 AERMOD 模型。研究选取了亚特兰大的一个郊区,从 PM2.5 年浓度结果以及手动和使用基于建议方法开发的软件为高速公路网络建模准备 AERMOD 输入文件的速度两方面进行了综合分析。结果证明,所提出的方法大大加快了 AERMOD 输入文件的准备过程,并方便了多情景或敏感性分析中多种建模配置的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Numerical modeling of water diversion impacts on water quality improvement in Lake Dianchi Coupling SWAT+ with LSTM for enhanced and interpretable streamflow estimation in arid and semi-arid watersheds, a case study of the Tagus Headwaters River Basin, Spain Groundwater storage loss in the central valley analysis using a novel method based on in situ data compared to GRACE-derived data pyKasso: An open-source three-dimensional discrete karst network generator Parallel Princeton Ocean Model based on OpenACC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1