Rosalia Maglietta , Giorgia Verri , Leonardo Saccotelli , Alessandro De Lorenzis , Carla Cherubini , Rocco Caccioppoli , Giovanni Dimauro , Giovanni Coppini
{"title":"Advancing estuarine box modeling: A novel hybrid machine learning and physics-based approach","authors":"Rosalia Maglietta , Giorgia Verri , Leonardo Saccotelli , Alessandro De Lorenzis , Carla Cherubini , Rocco Caccioppoli , Giovanni Dimauro , Giovanni Coppini","doi":"10.1016/j.envsoft.2024.106223","DOIUrl":null,"url":null,"abstract":"<div><div>Estuaries play a crucial role in the maintenance of the ecological balance of coastal ecosystems. Salinity intrusion can disrupt these fragile ecosystems, impacting aquatic life and human activities in coastal regions. An accurate prediction of salinity intrusion is essential for managing water resources and preserving ecosystems. This paper introduces a novel hybrid tool, called Hybrid-EBM model, designed to predict the salt-wedge intrusion length and the salinity at river mouth of an estuary. Combining the state-of-the-art Estuary Box Model (EBM) with machine learning algorithms, the new Hybrid-EBM model provides an accurate forecast of the salinity intrusion events. Experimental results highlight the effectiveness of Hybrid-EBM in salinity prediction with an RMSE of 3.41 psu against the 4.22 obtained by EBM. The outputs of this paper represent a significant advancement in the understanding of the impacts of salinity intrusion along the estuarine ecosystems, contributing to the sustainability of the coastal regions worldwide.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106223"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002846","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Estuaries play a crucial role in the maintenance of the ecological balance of coastal ecosystems. Salinity intrusion can disrupt these fragile ecosystems, impacting aquatic life and human activities in coastal regions. An accurate prediction of salinity intrusion is essential for managing water resources and preserving ecosystems. This paper introduces a novel hybrid tool, called Hybrid-EBM model, designed to predict the salt-wedge intrusion length and the salinity at river mouth of an estuary. Combining the state-of-the-art Estuary Box Model (EBM) with machine learning algorithms, the new Hybrid-EBM model provides an accurate forecast of the salinity intrusion events. Experimental results highlight the effectiveness of Hybrid-EBM in salinity prediction with an RMSE of 3.41 psu against the 4.22 obtained by EBM. The outputs of this paper represent a significant advancement in the understanding of the impacts of salinity intrusion along the estuarine ecosystems, contributing to the sustainability of the coastal regions worldwide.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.