Leveraging feed-forward neural networks to enhance the hybrid block derivative methods for system of second-order ordinary differential equations

Sabastine Emmanuel , Saratha Sathasivam , Muideen O. Ogunniran
{"title":"Leveraging feed-forward neural networks to enhance the hybrid block derivative methods for system of second-order ordinary differential equations","authors":"Sabastine Emmanuel ,&nbsp;Saratha Sathasivam ,&nbsp;Muideen O. Ogunniran","doi":"10.1016/j.jcmds.2024.100101","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an innovative method combining discrete hybrid block techniques and artificial intelligence to enhance the solution of second-order Ordinary Differential Equations (ODEs). By integrating feed-forward neural networks (FFNN) into the hybrid block derivative method (HBDM), the modified approach shows improved accuracy and efficiency compared to traditional methods. Through comprehensive comparisons with exact and existing solutions, the study demonstrates the effectiveness of the proposed approach. The evaluation, utilizing root mean square error (RMSE), confirms its superior performance, robustness, and applicability in diverse scenarios. This research sets a new standard for solving complex ODE systems, offering promising avenues for future research and practical implementations.</div></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"13 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415824000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative method combining discrete hybrid block techniques and artificial intelligence to enhance the solution of second-order Ordinary Differential Equations (ODEs). By integrating feed-forward neural networks (FFNN) into the hybrid block derivative method (HBDM), the modified approach shows improved accuracy and efficiency compared to traditional methods. Through comprehensive comparisons with exact and existing solutions, the study demonstrates the effectiveness of the proposed approach. The evaluation, utilizing root mean square error (RMSE), confirms its superior performance, robustness, and applicability in diverse scenarios. This research sets a new standard for solving complex ODE systems, offering promising avenues for future research and practical implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用前馈神经网络增强二阶常微分方程系统的混合分块导数法
本研究介绍了一种结合离散混合块技术和人工智能的创新方法,以提高二阶常微分方程(ODE)的求解能力。通过将前馈神经网络(FFNN)集成到混合分块导数法(HBDM)中,与传统方法相比,改进后的方法显示出更高的精度和效率。通过与精确解法和现有解法的综合比较,该研究证明了所提方法的有效性。利用均方根误差 (RMSE) 进行的评估证实了该方法的卓越性能、稳健性和在各种情况下的适用性。这项研究为解决复杂的 ODE 系统设定了新的标准,为未来的研究和实际应用提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1