Yaqi Wang , Zachary M. Prince , Hansol Park , Olin W. Calvin , Namjae Choi , Yeon Sang Jung , Sebastian Schunert , Shikhar Kumar , Joshua T. Hanophy , Vincent M. Labouré , Changho Lee , Javier Ortensi , Logan H. Harbour , Jackson R. Harter
{"title":"Griffin: A MOOSE-based reactor physics application for multiphysics simulation of advanced nuclear reactors","authors":"Yaqi Wang , Zachary M. Prince , Hansol Park , Olin W. Calvin , Namjae Choi , Yeon Sang Jung , Sebastian Schunert , Shikhar Kumar , Joshua T. Hanophy , Vincent M. Labouré , Changho Lee , Javier Ortensi , Logan H. Harbour , Jackson R. Harter","doi":"10.1016/j.anucene.2024.110917","DOIUrl":null,"url":null,"abstract":"<div><div>Griffin is a Multiphysics Object-Oriented Simulation Environment (MOOSE) based reactor physics application for multiphysics simulations of advanced reactor designs jointly developed by Idaho National Laboratory and Argonne National Laboratory. This paper summarizes the motivation, significance, architecture, design, and features of Griffin. Griffin offers flexible and extensible features to address the challenges associated with advanced reactor designs. These features range from fundamental particle transport to specific reactor physics tasks. The features cover a wide range including on-the-fly and traditional two-step cross-section generation methods, steady-state and transient transport solvers suitable for both heterogeneous and homogeneous models, high-fidelity depletion where thousands of isotopes can be tracked and low-fidelity depletion characterized by burnup, etc. The most fundamental aspect that sets Griffin apart from other reactor analysis codes is that it is developed based on the MOOSE framework. A modular development approach is strongly enforced, with multiphysics being an essential element considered since the beginning of Griffin’s development. Griffin links various MOOSE physics modules and couples to other MOOSE-based applications and non-MOOSE-based applications for multiphyiscs simulations. Griffin includes three modules: ISOXML for preparing and managing multigroup cross sections, radiation transport for solving the neutron transport equation, and reactor analysis for user-oriented reactor physics analysis functionalities. Griffin uses various finite element methods for spatial discretization, multigroup approximation for energy discretization and discrete ordinates method, spherical harmonics expansion method, and diffusion approximation for streaming direction discretization to solve the neutron transport equation. Griffin’s flexibility is evidenced through Griffin’s various applications to fast reactor, high-temperature reactor, pebble bed reactor, molten salt reactor, and microreactor designs. Griffin development follows the software quality assurance procedure for MOOSE-based applications and with software requirements consistent with the ASME NQA-1 standard. Griffin has been adopted into the reactor analysis system for the U.S. NRC and is in use at U.S. companies, universities and national laboratories.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924005802","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Griffin is a Multiphysics Object-Oriented Simulation Environment (MOOSE) based reactor physics application for multiphysics simulations of advanced reactor designs jointly developed by Idaho National Laboratory and Argonne National Laboratory. This paper summarizes the motivation, significance, architecture, design, and features of Griffin. Griffin offers flexible and extensible features to address the challenges associated with advanced reactor designs. These features range from fundamental particle transport to specific reactor physics tasks. The features cover a wide range including on-the-fly and traditional two-step cross-section generation methods, steady-state and transient transport solvers suitable for both heterogeneous and homogeneous models, high-fidelity depletion where thousands of isotopes can be tracked and low-fidelity depletion characterized by burnup, etc. The most fundamental aspect that sets Griffin apart from other reactor analysis codes is that it is developed based on the MOOSE framework. A modular development approach is strongly enforced, with multiphysics being an essential element considered since the beginning of Griffin’s development. Griffin links various MOOSE physics modules and couples to other MOOSE-based applications and non-MOOSE-based applications for multiphyiscs simulations. Griffin includes three modules: ISOXML for preparing and managing multigroup cross sections, radiation transport for solving the neutron transport equation, and reactor analysis for user-oriented reactor physics analysis functionalities. Griffin uses various finite element methods for spatial discretization, multigroup approximation for energy discretization and discrete ordinates method, spherical harmonics expansion method, and diffusion approximation for streaming direction discretization to solve the neutron transport equation. Griffin’s flexibility is evidenced through Griffin’s various applications to fast reactor, high-temperature reactor, pebble bed reactor, molten salt reactor, and microreactor designs. Griffin development follows the software quality assurance procedure for MOOSE-based applications and with software requirements consistent with the ASME NQA-1 standard. Griffin has been adopted into the reactor analysis system for the U.S. NRC and is in use at U.S. companies, universities and national laboratories.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.